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Abstract 
      This paper presents the latest efforts by the authors in the development of integrated drive simulation 
environment. Furthermore, we will present the utilization of these research developments into the 
classroom and how it can be integrated into lectures. We want to help students acquire the knowledge 
related to actual operations of integrated power systems, for example, the physical behavior of various 
electrical components, interactions of the individual components with each other during dynamic 
operations. We could also show component reactions to changes in system parameters or operational 
conditions as well as study the effects of design changes.  
      The development of physical component modeling and the integrated coupling of these realistic 
physical modeling with the over all system have led to the creation of realistic practical system that is 
capable of simulating dynamic operations. This environment also includes hardware-in-the-loop ability 
along with distributed simulation in order to achieve research innovations in addition to the associated 
education benefits.  
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1. Introduction 
 
      In teaching energy systems, the general rule is to explain the basic principles of electrical components 
such as machines as idealized models in addition to power electronics switches and control components. 
Practical effects are generally treated as correction factors of standard component models rather than true 
coupling of the physical component modeling. For example, the dq model used to describe rotating 
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machines ignores slotting and saturation effects of laminated iron cores. Furthermore, ideal transformer 
model is generally adopted to represent transformers, which neglects the nonlinear magnetization, 
magnetostriction effects and winding arrangements, etc. 
      Introducing changes in component designs, operational frequency as well as voltage and current 
levels and switching patterns presents a major challenge in evaluating practical effects using simplified 
modeling.  
      In addition, each component is modeled and introduced individually. The interactions between each 
component with the integrated system are not taken into consideration during course teaching due to 
limited teaching hours. These effects are generally left to be gained after graduation. 
      The feedback from students shows that the knowledge of physical modeling of various components 
and their effects in the integrated system are also important to their industry career or graduate studies. 
For example, they need to understand the origins of machine torque pulsations, the influences of PWM on 
machine performances, the consequences of faults, the effects of different machine designs on the system, 
etc.  Investigations indicate that graduate students could move to practical research projects much faster if 
they acquired related knowledge during their undergraduate study. Practicing engineers can use this 
knowledge to improve product quality effectively, diagnose problem accurately as well as study the 
effects of design operations and actual changes. An integrated simulation environment was developed to 
meet the demands mentioned above.  
      The FE-based physical phase variable model is a newly developed circuit model for electrical 
machines, transformers, and cables, etc. It considers the effects of geometry and saturation by using the 
inductance profiles, obtained from nonlinear transient FE analysis as well as loss and capacitance effects.  
Such a model can provide the same performance as the full utilization of FE electromagnetic model but 
with much faster simulation speed, which is suitable for classroom demonstration. As an example, the FE-
based phase variable model of a PM synchronous machine and a BLDC motor are presented here.  
      The coupling of FE model and external circuits are studied. To show the machine’s operation under 
fault conditions, the FE model is necessary because in this case the inductance profiles are unpredictable. 
In addition, FE modeling is the only way to describe the winding internal fault in machines and 
transformers. The coupling of FE model and external circuits are performed to demonstrate the 
transformer’s behavior under internal and external fault conditions.      
      Hardware-in-the-loop simulation is implemented. Utilizing this technique, the professor can show 
students the effectiveness of the developed FE-based phase variable model and demonstrate the 
influences of controller parameters on the actual hardware and the overall system.  
      In this paper, some of our research efforts and their applications in teaching are presented. It includes 
the FE-based phase variable model of PM synchronous machine and BLDC, demonstration of transformer 
internal and external faults, the effect of the pole number on the machine torque pulsations, effects of 
PWM drive on the machine, simulation of integrated system, hardware-in-the-loop simulation, and 
introduction of power electronics experiment simulation, etc.    
 
 
2. Examples 
 
2.1.  FE-based phase variable model of PM synchronous motor 
 
      The dq-model, a simplified description of rotating machines can’t meet the requirements such as 
torque ripples minimization, current harmonics analysis, high frequency effect evaluation, etc. The full 
FE model can take into consideration all geometrical, material and operational details of electrical 
machines. But it is computationally intensive when such a model is used for control and drive studies. A 
FE-based phase variable model is developed, which combines the accuracy of the full FE model of the 
machine with fast computational speed.  

      The physical FE-based phase variable model for the PM synchronous motor utilizes the rotor position 
dependence of inductance and back EMF obtained from sequential FE solutions at rotor positions 



covering a complete ac cycle. By adding the cogging torque, the proposed FE-based phase variable model 
performed at the same accuracy level as the full FE model [1]. The cogging toque and the rotor position 
dependent inductance profiles are shown in Fig.1 and Fig. 2. Fig. 3 shows the comparison of the dq, FE 
and the FE-based physical phase variable model. A commonly-used PWM vector control speed regulation 
system is built in Simulink. Fig. 4 shows the simulation results obtained using the proposed phase 
variable model. These results help students have a better understanding of the assumptions made in the dq 
model, the characteristics of FE analysis and the advantage of the developed FE-based model. 
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Fig. 1  Cogging torque profile of a 2-hp 6-pole PM synchronous motor 
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Fig. 2  Rotor position dependence of inductance of a 2-hp 6-pole PM synchronous motor 
 
 
2.2 FE-based phase variable model of BLDC 
 
      BLDC has a trapezoidal back EMF and requires rectangular stator currents to produce constant 
torque. The variation of the self and mutual inductances of the stator windings is non-sinusoidal. There is 
no particular advantage exists in transforming the abc equations to the dq frame. The commonly-used abc 
model assumes that the self and mutual inductances are constant. Due to the physical rotation of the rotor 
and the nonlinear magnetization property of stator iron, the inductance varies with rotor position and 
winding current.  



      The FE-based phase variable model of BLDC is developed [2]. It provides an equivalent circuit model 
of BLDC motors for utilization in simulation environments because the dq model is not applicable to 
BLDC machines. Fig. 5 shows the accuracy of the developed phase variable model by comparing it with 
the full FE model. With the developed model, the working principle of BLDC can be explained to 
students conveniently.   
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Fig. 3  Torque profile obtained by (a) dq-model, (b) FE model, (c) FE-based phase variable model 
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Fig. 4  Results obtained using a physical phase variable model in a PWM drive system,  
(d) back EMF, (e) voltage,  (f) torque  

 
2.3 Effects of the pole number on torque pulsations 
 
      Fig. 6 shows the geometry and field picture of two PM motors which have different number of poles.  
The FE-based phase variable model of these two machines are developed and inserted in motor drive 
simulation. Fig. 7 shows the obtained torque profiles, which demonstrate the effect of pole number on the 
torque pulsations. 
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Fig. 5  BLDC torque and current profiles obtained  by (a), (b) full FE model; (c), (d) FE-based phase 
variable model 
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Fig. 6  The effect of switching frequency on machine properties 
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Fig. 7  Torque profiles (a) of 12- pole motor; (b) of 6-pole motor 



 
2.4 Simulation of transformer fault using FE modeling 
 
      Having the knowledge of faults, which commonly happen in electrical machines, transformers, etc. is 
very helpful to the fault diagnosis and removal.  In addition to the physical modeling under normal 
operating conditions, the physical modeling of electrical machines under fault conditions is also studied 
by the authors [3].  
      Since the inductances are unpredictable under the fault condition, both the simplified model and the 
FE-based physical phase variable model are not applicable to this case. Therefore, for the external faults, 
the coupling of the FE model and circuits needs to be performed; for the internal winding faults, the short 
circuit or open circuit fault needs to be described at the stage of establishing the FE model.      

As an example, Fig. 8 and Fig. 9 show the procedures for transformer external fault and internal fault 
studies. The obtained results are given in Fig. 10. The explanation and the demonstration of this 
transformer fault problem help student to understand the function of FE model in fault studies and the 
corresponding procedures. 
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Fig. 8  Linkage of FE transformer model to external circuit 
 
 

ab

Secondary Primary

A

SW

a

b

Secondary Primary

c

SW

A

C

A

B

B

 

 

 

 

 

 

Fig. 9  Representation of internal faults on primary coils for, (a) turn to ground fault simulation  
(b) turn to turn fault simulation 

       
 

2.5 Simulation of integrated power systems 
 
      Fig. 11 shows the diagram of an integrated power system, which provides students an over all picture 
of the actual power system constitution. Fig. 12 shows the voltage or current waveforms of the 
transformer, rectifier and the voltage waveform, speed and torque profiles of the motor in an actual 
integrated system [4].  
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Fig. 10  Three phase fault secondary currents from full FE model,  
(a) “a” phase current,  (b) “c” phase current  
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Fig. 11  Integrated power system 
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Fig. 12  Terminal voltage profile of the cable, current profiles of the transformer, rectifier and  

simulation results obtained using the FE-based phase variable model 
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Fig. 13  Effect of switching frequency on machine properties 
 
 
2.6  Effects of PWM drive on machine behavior 
 
      Modern drives use PWM-fed. It is important to investigate the machines’ behavior under PWM 
excitation conditions.  Demos shown in Fig. 13 are prepared to help student gain the knowledge of PWM 
drive and the influence of PWM switching frequency on the current waveform and torque profile of a PM 
synchronous motor.    
      Fig. 14 Demonstrates the over voltage phenomenon existing at the winding terminal of motors fed by 
a long cable, which is one of the important phenomena in PWM drive.  
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Fig. 14  Terminal voltage of motor driven by PWM, (a) obtained by using  HF motor model,  
(b) obtained by using LF motor model 
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2.7 Simulation with hardware in the loop  

 

 

 

 

 

 

 

 

 

    Fig. 15  Hardware in the loop simulation 

 
      Hardware-in-the-loop is a new technology which plays an important role for design and optimization.  
We introduced this technology in our teaching practices mainly for two purposes. One is to provide 
students an opportunity to access state-of-art simulation technology; the other is to provide a controller 
design environment for students who don’t have background of computer control technology. Fig. 15 



shows the configuration of an ac motor control system. The controller board is inserted in the computer, 
the simulation experiment is setup via the computer interface.  
 
 
2.8 Simulation of power electronics experiments 
 
      The Simulink simulation of power electronics experiments is developed.  Such a simulation 
environment has the following advantages. First, students can use it to preview before the experiment and 
review after the experiment. Second, the influences of parameter variations on system performances can 
be studied. Third, it provides the possibility to observe simultaneously many voltage and current signals. 
Fig. 16 shows an example of fly back converter experiment. 
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Fig. 16  An example of software simulation of power electronics experiment 

 
 
3. Conclusion 
 
      In this paper, our research efforts on physical modeling of electrical machinery are presented. They 
are the FE-based physical phase variable model of various electrical components, FE and circuit coupling 
for transformer fault studies, the simulation of the integrated system for studying the interactions of 
components and the influences of different designs, etc., in which the geometry, saturation magnetization 
property, high frequency effects, etc, are considered. The applications of these research efforts in energy 
system teaching are introduced.   
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