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Abstract 
Heavy rail systems traditionally known as Metros as well as other transit systems are continuously subject 
to disruptions which are caused by vehicle failures, communication failures and unexpected high demand 
among others. These situations cause ineffective system operations resulting in longer passenger waiting 
time, delays in the itineraries and trains bunching throughout the alignment.This paper presents the results 
obtained in a study of a year long database of a heavy rail transit system in operation in a major urban 
area of the US. The main objective of the work presented is to determine mathematical relationships that 
can be applied for analysis of disruptions of transit systems in terms of three main aspects namely, time 
between disruptions, disruption duration, and delay/headway ratio. 
 
A brief description of the system is initially presented followed by descriptive analysis of the frequency of 
occurrence of the detected events causing disruptions and the resulting average delays. Statistical 
procedures are followed to obtain the relationships that arise from the data analysis. In addition, the 
disruption impacts over the system operation are presented. In terms of time between successive 
disruptions, an exponential relationship was found to be the best fit to the data obtained in the field. 
Regarding disruption duration, a triangular distribution was found as the best fit. Finally, the 
delay/headway ratio analysis provided insights in the use of this standardized variable to analyze system 
disruptions using simulation. 
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1. Introduction 
 
Transit systems are frequently subjected to disruptions that affect the service quality.  Disruptions are 
caused by several factors such as brake system failure, door failure, train control failure and incidents 
inside the vehicles. 



 
This paper presents the results of a study of a comprehensive and accurate data set of a heavy rail transit 
system in operation in the United States. The metro system is automated and serves a vast population in a 
major metropolitan area. The data set represents the failures occurring during the year 2001 in one of the 
metro lines of the mentioned system. This particular line includes twenty-seven stations along a 47.9 km.  
 
2. Disruption Causes and Effects 
 
During the year 2001, there were a total of 1,156 incidents on the metro line that disturbed the system 
operation.  Figure 1 presents a summary of the disruptions occurring on the line during the analyzed 
period.  As seen in the figure, the first four major causes of disruption were failures associated with the 
brake system, doors, automatic train control (ATC), and station overrun.  These disruption causes 
correspond to 66% of the overall disruptions during the analyzed period. 
 
The metro line uses eight performance indicators to estimate the effect of disruptions on the system 
normal operation.  Four of these performance indicators are Time related Indicators that measure the 
delay on the system and the other four are Reliability Indicators that measures the disruption effect on the 
system reliability.  

 
The four Time Indicators and their description are shown below: 

1. Duration: The length of time taken by the disruption 
2. Train Delay:  The delay on train “x” caused by disruption “y”. 
3. Passenger Delay:  The extension of the passenger waiting time or the on-board time 

caused by a disruption. 
4. Line Delay: The delay on the overall system caused by disruption “y” 
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Figure 1: Metro Line Incident Frequencies for the 2001 



The four Reliability Indicators and their description are shown below: 
1. Partially Late: The number of trains with partially late trips (trains that partially fulfill 

the assigned schedule) due to an incident “y” 
2. Offloaded:  The number of trains that need be offloaded due to a disruption “y”. 
3. Late Trips:  The number of trains that arrive late to the final destination due to a incident 

“y”  
4. Lost Trips: The number of trains that do not finish the assigned schedule due to a 

incident “y” 
 
According to the analyzed data, the disruption that causes the longest delay for the train, passenger, and 
line is the jump (that is unauthorized person on the tracks possibly struck by the train), which causes an 
average delay of 215 minutes to the train and 22 minutes to the passenger and line.  It is important to 
mention that this type of disruption is not frequent on heavy rail systems occurring twice in our disruption 
data set. 
 
Without taking into consideration the disruption caused by Jump incidents, the four reasons for major 
train delay are fire and smoke, signal failure, track failure, and propulsion and power failure.  The brake 
failure and door failure are the most frequent causes of disruption.  On  average, they result in 5.2 minutes 
and 4.9 minutes delay, respectively.  Figure 2 presents the delay on the Train, the passengers and the Line 
due to the disruptions.  As presented in the figure the causes for longest passenger delay and line delay is 
Arching which is pass power to a section without power. 
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Figure 2:  Average Delays Caused by the Disruption 
 



In addition to delays, the disruptions otherwise affect the service reliability.  During 2001, the metro line 
lost 30 trips, 48 trains arrived late at the final destination, 777 were partially late and 571 there were 
offloaded vehicles.  The major reason for the late trips and lost trips were the brakes, which caused 20 late 
trips, 6 lost trips, 329 partially late trips and 236 offloaded vehicles.  Figure 3 presents the performance 
disturbances caused by the disruptions.  As seen in the figure, besides the brakes failure, the door failure, 
the ATC failure and no speed readout, were the major causes for partially late trips and offload.  On the 
other hand, in addition to the brakes the major reasons for lost and late trips were doors failures, operator 
failure and other miscellaneous events. 
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Figure 3: Performance Disturbances Caused by the Disruptions 
 
 

3. Time Between Successive Disruption Events 
 
The disruption analysis was concentrated on those that are less than ten (10) minutes, which is 
comparable to two times the Tren Urbano rush hour headway.  Using the available metro line disruption 
data, the statistical distribution and its frequencies were estimated. 
 
During the analyzed year in the metro line occurred 1,056 disruptions events with less than 10 minutes 
duration for 92 percent of the overall data.  As presented in Figure 4 the histogram developed from this 
data has the shape of an exponential distribution.  The calculated mean for the analyzed data is 454 
minutes with an estimated variance of 547.3 minutes.  Using an error of α = .05 a Chi-square goodness of 
fit test was developed in order to prove the following hypothesis: 

H0= There is no significant difference between the disruption data and what would be expected 
from an exponential distribution with a mean of 454 minutes and a variance of 547.3.  Table 1 presents 
the goodness of fit test developed to prove this hypothesis. 



 
The degrees of freedom for the Chi-square test performed to validate the data are: 

 v = k -1- p = 13 - 1- 2 = 10           (1) 
 
In this case the parameter “p” is equal to two because use mean and the standard deviation from the 
observed data are used to obtain the theoretical frequencies.  With α = 0.005 and v = 10, the critical x2 is 
16.91.  Since the obtained x2 is greater than the critical x2 (63.53 > 16.9), the H0 was rejected. 
 
Because the Chi-square test result differs from the histogram on figure 7.1.4, a Q-Q plot was done in 
order to validate the presumption that the analyzed data followed an exponential distribution.  The Q-Q 
plots amplify the differences that exist between the model exponential distribution and the observed data.  
If the variance between the observed frequency and the modeled frequency did not exist, the Q-Q plot 
would be linear with a slope of 1 and the Y tends to 0. 
 

Table 1: Chi-Square Test for Time between Successive Disruption Events 

ID RANGE OBSERVED 
FREQUENCY 

OBSERVED    
FREQUENCY 

EXPECTED 
FREQUENCY 

X2  
STATISTICS

1 0 250 519 519 447.111 11.55871 
2 250 500 189 189 257.908 18.41088 
3 500 750 142 142 149.037 0.332262 
4 750 1000 73 73 85.617 1.859312 
5 1000 1250 58 58 49.679 1.393729 
6 1250 1500 29 29 28.539 0.007447 
7 1500 1750 12 12 16.912 1.426664 
8 1750 2000 12 12 9.513 0.650181 
9 2000 2250 6 6 5.285 0.096731 

10 2250 2500 4 4 3.171 0.216727 
11 2500 2750 4 4 2.114 1.68259 
12 2750 3000 4 4 1.057 8.194181 
13 3000 3250 0 5 1.057 14.70884 
14 3250 3500 2    
15 3500 3750 0    
16 3750 4000 1    
17 4000 4250 0    
18 4250 4500 1    
19 4500 4750 1    

  Total 1057 1057 1057 60.53825 

                                                 
1  Introduction to Simulation Using SIMAN (8) 



0

100

200

300

400

500

600

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

37
50

40
00

42
50

45
00

47
50

Time Between Successive Disruptions Events

Fr
eq

ue
nc

y

Observed Frequency
Expected Exponential Frequency

 

 Figure 4:  Time between Successive Disruptions Less Than 10 Minute  
 
The Q-Q plot for the analyzed data is presented on Figure 5.  By visual inspection, the analyzed data plot 
tends to be linear.  In order to prove its linearity, a linear regression was done, setting the intercept to 0.  
As shown in the figure the linear regression slope approaches 1.0.  The value of r2 is .9638, so 96.4% of 
the observed variation in the modeled data can be attributed to an approximately linear relationship 
between the modeled data and the observed data.  Taking into consideration those results, the analyzed 
data can be approximated using an exponential distribution with a mean of 454 minutes between 
incidents. 
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Figure 5:  Q-Q Plot for Exponential Distribution and Successive Disruption Events Data 

 
 
 
 
 
 



4. Disruption Duration   
 
The disruption duration is defined as the time elapsed between the beginnings of the incident and when 
the incident was resolved and the trains return to operation.  It is an important parameter since it 
represents vehicle delays.  
 
The histogram presented in Figure 6, was developed for delays less than ten minutes.  As shown in the 
figure, the analyzed data tend to be a triangular distribution, with an average of 3.96 minutes, median of 3 
minutes and a standard deviation of 2.48.  Using an error of α = .05 a Chi-square goodness of fit test was 
developed in order to prove the following hypothesis: 

H0= There is no significant difference between the disruption data and what would be expected 
from a triangular distribution with a Median of 3 min. and an average of 3.96 min.  Table 2 show the 
goodness of fit test developed to prove this hypothesis. 

 
Table 2: Chi-Square Test for the Disruption Events Duration 

LOWER 
LIMIT 

UPPER 
LIMIT 

PROBABILITY 
OF  

OCCURRENCE 

EXPECTED 
NUMBER 
 IN CLASS 

OBSERVED 
NUMBER 
 IN CLASS 

X2 

0 2 0.166 176.16 125 20.94 
2 4 0.315 332.79 417 17.01 
4 6 0.241 254.46 235 1.61 
6 8 0.167 176.17 164 0.90 
8 10 0.093 97.87 93 0.26 
10 12 0.018 19.57 23 0.51 
 Total 1 1057 1057 41.24 

 

The degree of freedom for the chi-square test used to validate the data is: 
 v = k -1- p = 6 - 1- 1= 4           (2) 

 
In this case the parameter “P” is equal to one since the median from the observed data was used to obtain 
the theoretical frequencies.  With α = 0.005 and v = 4 the critical x2 is 9.492.  Since the obtained x2 is 
greater than the critical x2 (41.24 > 9.49), the H0 was rejected.  
 
Because the Chi-square test result differs from the histogram on Figure 7; a P-P plot was performed in 
order to validate the asumption that the analyzed data followed a triangular distribution.  The P-P plots 
allows us to analyze differences that exist between the model triangular distribution and the observed 
data.  If variance between the observed frequency and the modeled frequency does not exist, the P-P plot 
must be linear with a slope of 1 and the Y intercept tending to 0.   
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Figure 6: Disruption Duration Histogram 
 
By visual inspection of the P-P plot on Figure 7, the analyzed data plot tends to be linear.  In order to 
prove its linearity, a linear regression was performed, setting up the intercept to 0.  As shown on the 
figure the linear regression has a slope 1.0041 and the r2 value is .994, so 99.4% of the observed variation 
in the modeled data can be attributed to an approximately linear relationship between the modeled data 
and the observed data. those results, the analyzed data can be approximated using an exponential 
distribution. 
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Figure 7: P-P Plot for Triangular Distribution and Disruption Duration Data. 
 
 
 
 



5. Delay/Headway Ratio 
 
The fundamental idea of this research is to analyze the implications of Scheduled Based and Headway 
Based operational logic in order to allow a better service when short and medium disruptions occur.  For 
the purpose of this research, a disruption was considered in the range of short to medium when it is within 
the range of 0 to 2 times the headway. 
 
The Delay/Headway ratio is a measure that explains how large or small the delay is compared with the 
headway at the time when the disruption occurs.  During the 2001 on the metro line 88% of the occurred 
disruptions was less than two times the headway when they occurred.  Figure 8 presents a cumulative 
density plot, which describes the overall delay/ headway data distribution.  
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Figure 8: Overall Data Delay/Headway Ratio 
 
Peak Hour will have modeled disruptions in the range of 0 to 10 minutes.  This range was arbitrarily 
selected, considering the designed Tren Urbano five minutes headway for the peak hour. In order to 
determine whether the arbitrarily selected delay range differs from the overall data, the delay was 
standardized using the Delay/Headway ratio. 
 
Kolmogorov-Smirnov (K-S) goodness of fit test was performed, in order to ensure that the modeled data 
do not defer from the overall data.  With an error α of 0.05, the goodness of fit test was performed in 
order to prove the following hypothesis: 

H0= There is no significant difference between the analyzed and the overall data.  Table 3 shows 
the K-S goodness of fit test developed to prove this hypothesis.  
The maximum K-S Statistic calculated is 0.04147.  The critical value for significance at α =0.05 and 
degrees of freedom = 1057 is given by the following expression3: 
 

K-S Critical= 1.36/ n1/2  = 0.04183                    (3) 
  

Since 0.04147 < 0.04183, the H0 hypothesis of no significant differences between the analyzed data an 
overall data is not rejected.  According to the data presented in Figure 9 and the goodness of fit test result, 
it was not possible to observe any significant difference between the studied delays (0 to 10 minutes) and 
the overall data.  For this reason, the asumption that the delay is within the range of 0 to 10 minutes is 
valid and does not differ from reality.   
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Table 3: Delay-Headway Kolmogorov-Smirnov Goodness of Fit Test 

LIMIT OBSERVED 
FREQUENCY 

OBSERVED 
RELATIVE 

FREQUENCIES 

OBSERVED 
CUMULATIVE
FREQUENCY 

EXPECTED 
CUMULATIVE 
FREQUENCIES 

K-S 

0 124 0.11731 0.11731 0.11495 0.00236 
0.5 248 0.23463 0.35194 0.33276 0.01918 
1 381 0.36045 0.71239 0.67156 0.04083 

1.5 103 0.09745 0.80984 0.76837 0.04147 
2 125 0.11826 0.92810 0.88678 0.04132 

2.5 22 0.02081 0.94891 0.90925 0.03966 
3 40 0.03784 0.98675 0.94987 0.03688 

3.5 14 0.01325 1 0.96543 0.03457 
4 0 0 1 0.97666 0.02334 

4.5 0 0 1 0.97753 0.02247 
5 0 0 1 0.98271 0.01729 

5.5 0 0 1 0.98617 0.01383 
6 0 0 1 0.99049 0.00951 

6.5 0 0 1 0.99136 0.00864 
7 0 0 1 0.99309 0.00691 

7.5 0 0 1 0.99309 0.00691 
8 0 0 1 0.99481 0.00519 

8.5 0 0 1 0.99481 0.00519 
9 0 0 1 0.99481 0.00519 

9.5 0 0 1 0.99481 0.00519 
10 0 0 1 0.99481 0.00519 

10.5 0 0 1 0.99481 0.00519 
11 0 0 1 0.99568 0.00432 

11.5 0 0 1 0.99654 0.00346 
12 0 0 1 0.99654 0.00346 

12.5 0 0 1 0.99654 0.00346 
More 0 0 1 1.00000 0 

    MAX 0.04147 
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Figure 9: Delay Headway Cumulative Probability Data Analysis 
  
 
6. Conclusions  
 
This paper concentrated on the analysis of disruption causes and effects in a heavy rail system focusing 
on developing mathematical relationships in three areas namely time between disruptions, disruption 
duration and delay/headway ratio. 
 
It was found that the delay/headway ratio analysis has the potential to be used as a good indicator for 
heavy rail system disruption analysis. Good use of this indicator will result in identifying strategic actions 
that could be taken to improve the operation in the medium and long range and save costs by generating 
actions that anticipates and attend disruption situations. 
 
It is important to highlight that an updated and accurate database of the disruptions occurring in a system 
is a must for the application of the processes presented in this paper. 
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