

LACCET’2005 – Information Technology Track – Paper No. 38 1

Third LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCET 2005)
“Advances in Engineering and Technology: A Global Perspective”, 8-10 June 2005, Cartagena de Indias, COLOMBIA

Enhancing the Survivability of Intrusion Detection Agents
through Port Switching and Peer-to-peer Replication

Salvador Mandujano, PhD

Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico, smv@itesm.mx

Abstract
Security applications such as intrusion detection software often lack a security-conscious design that
supports their vigilance goal. Similarly, software generation tools and libraries typically lack security
constructs that support the development more robust systems. The latter is the case of agent-generation
frameworks, which are rarely designed to guarantee agents a safe, continuous functioning hereby limiting
their operational potential. Some intrusion detection architectures have contemplated the use of software
agents and have inherited challenges from both, the design branch and the agent-support software branch.
This paper sheds some light on the interleaving of survivability features into intrusion detection agents. It
contemplates two aspects essential to agentry, namely communication confidentiality and agent
availability. We discuss the details of a prototype that implements a linear-time port-switching
communication protocol aimed at protecting exchanges between agents, and a peer-to-peer replication
and location model to strengthen the availability of agents. We discuss the design and the specifics of the
integration of these two techniques and present experimental results that show an increased security-level
at a low performance cost.

Keywords
Agent survivability, intrusion detection agents, replication

1 Introduction

Several years ago, the evolution of software found a new paradigm. Object-centered systems gave birth to
code and data structures called agents that collectively accomplished a common goal (Weiss, 1999). The
basic capabilities of such entities made of this approach an enticing model for developing applications
requiring remote communication, cooperative work, or distributed storage. The status quo of computer
networks, including the Internet, points at the utilization of highly-distributed software that helps
efficiently and meaningfully collect and analyze large amounts of information. Multiagent Systems
(MAS) are a natural alternative to these problems.

The area of intrusion detection has also looked at this approach looking for potential solutions to some
prevailing challenges. This type of applications reports the occurrence of anomalous activity by
inspecting a number of evidence sources. The inspection and correlation tasks necessary for intrusion
detection can be independently handled by autonomous entities and thus different architectures to
integrate them have been proposed using agents (Allen et al., 2000; Balasubramaniyan et al., 1998;
Zamboni and Spafford, 2000). The design of some of these architectures did not contemplate security,
which impacted the robustness of the protection mechanisms itself.

LACCET’2005 – Information Technology Track – Paper No. 38 2

A key element in software design that is not easily obtainable is reliability. Due to the number of system
components – in software and hardware – that need to interact effectively in order to provide a service,
systems have become more vulnerable to attack. Larger systems usually imply more lines of code, which
increase the number of potential bugs. The complexity of systems also makes configuration and
maintenance harder as they demand increased expertise from administrators who are responsible for
setting up and supporting these systems. A whole platform can be compromised from a single
configuration or coding error.

An agent-based service in operation could also be tricked into performing malicious activities. Agents
could be shut down or their knowledge bases (KB) could be altered or deleted. Agent generators, libraries,
and development environments speed up the development of this kind of software providing a good
number of features that enrich it functionally. However, even when these systems usually include security
routines to protect information exchanges with cryptographic algorithms, they do not prevent developers
from creating flawed designs. An agent generated using these technologies is not automatically secure. In
fact, the basic agent structures that serve as primitives to generate more specialized agents cover just the
most elementary points of security such as encapsulation and identification (not authentication) through
class interface definitions and agent name servers (Brugali and Sycara, 2000).

Security mechanisms are frequently proposed for these systems but just a few projects have actually
implemented them. This paper discusses the integration of survivability mechanisms into intrusion
detection agents. Security applications must be secure by themselves in order to aid other resources in the
preservation of their confidentiality, availability, and integrity features. We propose the inclusion of these
features as a default in all agents produced by automated tools as a way of improving, from the very
beginning, their protection level. The rest of this paper is divided into five sections. Section 2 describes
the motivation for studying agent survivability and points out the security challenges faced by MAS.
Section 3 covers related projects in the field of agent security. The proposed solution techniques are
explained in Section 4, and Section 5 outlines the implementation details of the prototype. Finally,
Section 6 describes the experiments and results. Conclusions appear at the end, in Section 7.

2 Background

Security has been a challenge to agent-based software for a long time. These are some of the most
relevant aspects that need to be taken into consideration when dealing with the safe operation of this type
of applications.

2.1 Security challenges in MAS

Given the lack of security in agent frameworks, once the code of an agent has been produced, it will have
to be secured in a separate effort in order to guarantee communication privacy and continuous
availability. There are two main threats that have been identified and studied by the MAS community:
malicious agents and malicious hosts (both of which are exacerbated by mobility that adds a number of
important challenges due to the fact that software no longer execute at a single, fixed location (Schneider,
1997.)) An agent can communicate with its peers through message passing, blackboard systems,
mailboxes, etc. (Lynch, 1996). At any given time, a service request or reply from a peer agent could be
incorrect. The agent could have been subverted or sabotaged by an attacker and, therefore, its behavior
can no longer be deemed trustable. If a legitimate agent submits a request for data to an untrusted agent,
the answer could contain false information leading to undesirable actions. The same would occur if an
agent name server is compromised and its tables are modified. References returned to clients could be
pointing at incorrect resources.

LACCET’2005 – Information Technology Track – Paper No. 38 3

The problem of malicious agents has been widely studied and there exist solution proposals to many of its
challenges (Pleisch and Schiper, 2000). Authentication methods, cryptography, and privilege systems
have been created to guarantee that the interaction between agents is safe and evolves as planned. Of
higher complexity is the problem of malicious hosts (Guan, 2000). How can someone prevent a host from
reading or modifying the KB or even the code of an agent it is executing? A mobile agent that travels
from host M into host N carries data from M and other previously visited hosts. In principle, the system
administrator at N has access to the contents of the agent. Most operating systems support this superuser
access level and so it is hard to limit what administrators are able to do and see. Techniques for the
execution of encrypted code (Sander and Tschudin, 1998) and watermarking have been developed to deal
with this problem. Malicious hosts and agents can cause severe damage to the operation of an agent-based
system. As long as these problems remain unsolved, the agent paradigm will be unable to fully develop
and succeed in commercial and other practical applications (Borselius, 2002).

Agent-based intrusion detection architectures pose similar challenges. Arranged in a hierarchical or
networked fashion, autonomous agents are in charge of capturing, filtering, correlating, and, in some
cases, reacting to security-relevant information (Janakiraman et al., 2003; Zamboni and Spafford, 2000).
Single point-of failure, limited resilience, and the use of no cryptographic method are typical flaws in the
design of these architectures. Of particular interest to us is the robustness of agents. Our intention is to
generate agents with a generic design and inner structure that allows them to provide, from launch time,
continuous operation by tolerating events such as system failures and intentionally induced faults, a.k.a.
attacks. Fault-tolerance deals with failures originated from the day-to-day operation of a system. These
failures are typically unintentional,and probabilistic methods exist to detect and correct them (Pleisch and
Schiper, 2000). At a higher level of complexity appear failures caused intentionally by humans. As
opposed to system failures, these are carefully crafted and concealed so that they are difficult to detect,
difficult to prevent, and difficult to recover from.

Probabilistic fault-tolerance methods are not enough to characterize the way attackers behave, though.
Survivability studies this kind of intentionally induced faults. For the purpose of this paper we will define
survivability as the capability a system has to provide a subset of basic services even in the presence of
attack or failure. In the case of security software agents, we consider the development of survivable
systems able to stand attacks from malicious entities. In particular, we focus on the confidentiality and
availability of agents without making any assumptions concerning the probabilistic independence of this
type of faults.

2.2 Security risks to individual agents

Programming bugs and configuration errors increase the possibilities of having a system compromised.
Agents may be attacked separately with the intention of, for instance, disabling them, sniffing on their
communications, keeping them at a particular location, or modifying the contents of their KB’s. All this
could severely disrupt the activity of an agent by making it untrustable to others. The features an agent
offers to others can be aimed by an attacker. Agents are autonomous by definition and, as such, should be
able to execute without the intervention of a central entity (Weiss, 1999). An agent is designed to have
enough knowledge as to decide what to do at any time. An agent should also display situatedness through
which it perceives the environment it inhabits and is able to change it through actions. An agent is social
by being capable of communicating and cooperating with other agents in order to solve common and
individual goals. Rational or goal-based behavior is also expected: an agent will never act in a manner
that impedes the achievement of its goal. Mobility is highly desirable as it gives agents the possibility of
suspending execution, moving to a different host, and resuming operations over there.

As components of a MAS, or working independently, attackers who try to circumvent the security of a
system can compromise intrusion detection agents as well. The following types of attack could be
implemented to alter the integrity and functioning of an agent platform (Sander and Tschudin, 1998):

LACCET’2005 – Information Technology Track – Paper No. 38 4

1. Privacy comprises. An agent in execution can store private information which is only shared through
predefined interfaces. However, the machine that hosts the agent has total access to its resources. Some
pieces of information could be illegally read by the host with the intention of benefiting other applications
or competing agents. Unencrypted communications among agents can be easily observed. Confidential
data such as trajectory plans, digital money, and the contents of a KB could also be copied by an
intermediate server that receives the agent if the information is not protected. Whether it is a peer-to-peer
or a centralized message-passing scheme, sniffing programs can always be installed to observe network
traffic at strategic locations.

2. Integrity compromise. If any external party gets to modify the data or the code of an agent, this can no
longer be considered stable nor being consistent with its design specification. Similarly, if an agent
interpreter or other agents detect that an agent has experienced any sort of modification, they can no
longer trust the information received from it as the agent itself may not be working to fulfill its objectives.
The cooperation potential of the agent will also be limited, as agents will look for alternate agents instead
of interacting with an agent whose integrity has been compromised (Yee, 1999). This will cause
suboptimal collaboration as a result of a reduced number of trusted agents.

An attacker can also remove the KB of agents and they will “forget” everything they have captured and
will have to be start up from scratch in order to collect data that helps them make decisions again and
proceed toward their goal. A mobile agent could be tampered with so as to trick it into performing
abnormal actions. Once received by a host, it could act as a Trojan horse able to plant backdoors or
stealing information to send it later to a predetermined location (Borselius, 2002).

3. Availability compromise. The availability of an agent platform can be compromised in several ways
such as service flooding, also known as Denial of Service (DoS), the actual deletion of agents, or via
restricted communications imposed by the host entity (either it be an executing virtual machine or a
server). The processing and storage capabilities of agents can also be reduced and agents can mistakenly
perceive that a certain resource has been exhausted. In any of those cases, the agent will be unable to
provide the services expected from it. By having its availability affected, an agent will miss opportunities
to cooperate with others, to supply information, and, at the very least, to timely serve requests from its
peers.

3 Related projects

Two important implementation concerns of fault-tolerant agents have been discussed by Schneider
(Schneider, 1997): 1) agent authentication, and 2) policy definition and enforcement in the context of
voting systems. As a way to achieve fault tolerance, agent replication has been proposed. Intermediate
agent states between a source and a destination are replicated in order to have redundant communication
paths between the hosts. In order to achieve security, messages are transmitted using threshold secret
sharing so that colluding nodes are unable to intercept communications.

Replication for fault-tolerant agents is studied in (Fedoruk and Deters, 2002). Redundancy by replication
leads to additional complexity and overhead can be minimized through proxy-based schemes such as
transparent replication. This technique allows agents to communicate with replicated clones through
single points of contact. The DARX framework (Martin et al., 2001) proposes replication not only for
agents but also for other objects. Critical-level tasks within a multiagent system are able to switch
between active and passive replication at execution time. This increases the processing needs from the
system but has the advantage of detecting faults more accurately.

LACCET’2005 – Information Technology Track – Paper No. 38 5

In (Dasgupta et al., 2000), they analyze the malicious-agent and the malicious-host problem in the light of
a multiagent e-commerce system called MAgNET. Some sellers and buyers may attempt, for instance, to
read private information or to alter the behavior of their peer agents in order to gain some advantage
during negotiations. The system is based on ASDK aglets for providing its core functionality. The
proposed solution involves methods to authenticate agents and servers before any interaction is started.
MAgNET implements privilege controls to define the operations permitted to each aglet. These methods
involve electronic signatures and certificates through which all parties are authenticated. For the
malicious-host problem, a server is unable to execute the code carried by an aglet unless it has suitable
privileges to do it. State appraisal (Farmer et al., 1996) studied this latter problem and implements
authentication and authorization granting by inspecting the state of an agent that requests access to a
server. Mobile agents may travel across networks where their integrity gets exposed. Users and hosts are
able to prevent attacks from rogue agents by carefully granting the minimum set of privileges an agent
requires reaching its goal and a group of state-appraisal functions provides an interface for analyzing the
agent’s state and requesting permits that protect interpreters from executing code that may have been
modified by another host.

The Sanctuary project (Yee, 1999) was developed with the intention to create a secure infrastructure for
mobile agents. This architecture presents several advances in agent execution, privacy and integrity
through cryptographic support. Being distributed function evaluation unfeasible for practical purposes,
and costly for protecting an agent from the executing host, this project implements secure co-processors.
These are trusted environments where agent code can be safely run with the guarantee that the results
have been correctly computed. Software approaches to ciphered computation of mobile code can be found
in (Sander and Tschudin, 1998). With these methods an agent is able conceal executable code from the
host and also to sign a document without disclosing its private key. It is true that: “There is no intrinsic
reason why programs have to be executed in clear-text form… (This assumption) is wrong because it
tacitly assumes that a mobile agent consists of clear-text data and clear-text programs” (Sander and
Tschudin, 1998). Even when this approach has been only tested with simple functions, it reduces the set
of potential attacks to denial of service and random modifications to agent programs or its output.

4 Solution

We focus on two of the security problems already discussed. The proposed model protects the
communications and KB’s of intrusion detection agents by guaranteeing they will be able to provide a
minimum level of functionality even in the presence of attack or failure. Unlike some of the projects
mentioned before, agents are not assumed to fail or be attacked independently from each other. This
section outlines the security problems these models address and describes the ideas behind them.

4.1 Peer-to-peer agent replication

In the event of attack, a host may reach an unstable state at which it is no longer safe for agents. Either
through self-checking routines that evaluate the integrity of the agent, or through external intrusion
detection mechanism that inform about the security level of the host, the components of a MAS can be
warned about the likelihood or actual existence of an attack. An adversary may compromise all or some
system resources depending on the authorization level he gets. Once inside, he will be able to access the
code and/or KB of agents for reading or writing. Any of the types of system compromise mentioned in
Section 2.2 may seriously affect the integrity and confidentiality of agents. Considering the fact that an
agent’s integrity is priority over availability since no trusted service can be really provided by a flawed
entity, an agent may sacrifice some of its availability with the intention of preserving integrity and
confidentiality.

LACCET’2005 – Information Technology Track – Paper No. 38 6

Figure 1. (1) Remote replication of a KB. (2) Local replication
of a KB. Hi denotes a host; LKB a local copy of a KB; and RKB
a remote copy of a KB.

This solution is possible when working with autonomous entities. It would not apply to systems that
cannot move or cannot suspend their operation. The agent paradigm makes it possible allowing an agent
to protect its KB by suspending execution and resuming at a safe, remote location and informing its peers
about the change (Sander and Tschudin, 1998). Unlike many MAS, we use a mechanism for agent
location that is not centralized. There is no agent name-server in charge of storing references to all
available agents. Instead, this is done by storing on each participant the location of all agents (bear in
mind that the number of agents that comprise an intrusion detection platform is typically small). At the
cost of space and performance, it is possible to eliminate the single-point-of-failure that a central name
server would represent and which constitutes a typical risk of hierarchical models. The information about
what agent is located where, is not only stored in a distributed fashion but also it is redundantly
maintained on every agent so that a compromised peer can recover as soon as possible from an attack by
contacting a peer.

If the file system of a host H is not compromised, an agent that perceives an unsecure state on the host
may replicate its state to disk using encryption, then suspend execution, and finally resume at the same
location when the security level of H come back to normal (Figure 1). When the agent is unsure about the
security state of the host, it will be necessary to replicate remotely. In the case of a deterministic remote
replication model, an attacker could know beforehand which are the hosts that store the KB’s of the
replicated agents. (Pseudo)randomized methods prevent an attacker from observing a transfer between
predetermined locations. This technique is complemented by a dynamic port allocation model (see
Section 4.2) that fragments and ciphers the replication stream deterring an attacker from capturing an
exchange.

Using random information from the system and its users, an agent is selected from the pool of
authenticated agents – authentication, location, and replication are performed in a peer-to-peer fashion
(Figure 1). This agent will store the KB and execution state of the agent that perceives an unsafe state at
its hosts. All agents are capable of replication and keep record of the agent to which they send their state
in order to recover it in the future. For a number n of servers hosting a number m of agents, this
replication model escalates well even for large values. The time needed to select a remote replication
agent grows O(m) as agents store reference to all available agents.

Servers that have been compromised are not considered for remote replication and, as long as there is one
available host running, its agents will be located. If an intrusion detection agent used proxy-controlled
replication (i.e., a model where a coordination agent is in charge of managing replication requests from

LACCET’2005 – Information Technology Track – Paper No. 38 7

client agents; Figure 2) it could backup its state to a peer agent but the strength of the mechanisms is
questionable. At least it suffers from single-point-of-failure that makes it less desirable for security
purposes. A peer-to-peer mechanism provides increased reliability leveraging the natural robustness of
MAS when organized non-hierarchically.

Figure 2. Proxy-controlled replication and peer-to-peer replication

4.2 Channel switching

Network daemons usually work at a predetermined port listening for service requests (although requests
from clients are usually generated within a broad range of port numbers). Port-scan attacks probe ports
trying to identify what type of services they provide. Once this is done, they look for vulnerabilities
present on those services and, if they find one, they are in a position to exploit them (Klevinsky, 2002).
DoS attacks typically start as port-scans which, after identifying flawed services, attempt to flood the
system with an overwhelming number of requests. This same sort of attack can be launched to disrupt the
operation of a MAS as well. We propose a model to minimize the likelihood of an agent being
compromised while it communicates with others.

In order deter this sort of attacks, we use a technique on both, client and servers, commonly used with
radio equipment: channel switching (services like FTP use switching but only at one side of the
connection; this switching order can be known a priori; Northcutt and Novak, 2002). Only at start-up will
agents listen on a well-known port number so. The requests for service on that port do not allocate
significant system resources. This preliminary port is used exclusively to agree on an actual
communication port s1 for the exchange (si 6= si + 1). The receiver proposes a valid port number that is
sent to the other party over a secure channel using public-key encryption. They immediately switch to that
port for information exchange.

Since the overhead of negotiating random port numbers is considerable, our model handles sets of k port
numbers (see Figure 3) that are used for one communication round only. The sender creates and sends the
set Ps1 = [s1, s2,... , sk] to be used in the first exchange. It also sends message m1 to the default port r0 of
the receiver. The receiver defines its initial set of random port numbers Pr1 = [r1, 2, ..., rk] as well as which
it sends to port s0. Port switching is maintained during the session until new port numbers need to be
agreed upon. In order to circumvent this protection mechanism, a port-scan will have to be run over and
over again and, by the time it succeeds, the communication will have most likely moved to a different

LACCET’2005 – Information Technology Track – Paper No. 38 8

port already. The value of the information transmitted through a session must be such as to make unlikely
for an attacker to integrate the packets observed at different ports and to arrange them in a way that makes
sense (remember also that all exchanges are encrypted). The frequency of switching along with
encryption makes it a more secure mechanism.

Figure 3. Channel switching for communication between two agents

5 Implementation details and experimental results

All agents are equipped with client and server capabilities. Every agent contains a key-pair to
cipher and decipher messages. At start up, the administrator is asked to enter a pass-phrase that
will protect the private key on the file system. The public key is broadcast to all agents so that
secure communication can take place. It is assumed that, when the host is at a stable state,
primary memory is safe and keys can be uploaded into it in order to perform encryption. Once
this is done, the data structures that contain the keys are overwritten on disk (not just de-
allocated in memory) with blank padding. The name and location of all available agents are
stored into every agent and are updated with messages concerning new locations or service
suspension. Remote replication agents are selected randomly and they can store the KB of more
than one agent. In the implementation, agents can only serve one replication request at a time.

TCP sockets are used to develop the port allocation scheme. A data structure contains the series
of random port numbers that will be used at each exchange. The number of ports k stored by this
structure may vary (see results in Figure 5). A small k indicates port numbers will have to be negotiated
very often during a session. A large k reduces the time spent in negotiation of port numbers, but
represents a bigger risk since, in the event an intruder captures port numbers, more exchanges could be
compromised.

The implementation of the experimental prototype was done on a RedHat Linux-9.0 box using the gcc
compiler and coded entirely in C. The testing facility is a set of Linux machines running kernels 2.1 and
above on Red Hat 7.3, RedHat 8.0, RedHat 9.0, Mandrake 8.0, and Debian Linux installations. Public-key

LACCET’2005 – Information Technology Track – Paper No. 38 9

encryption was implemented using the Open SSL library in PEM format for RSA. Using dynamic
compilation, agents are around 23 Kb in size. If static compilation is used, agents become larger (540–600
Kb) but have the advantage of not using external libraries that could have been tampered with. To obtain
randomness, users are asked to enter some input at the time an agent is to be created (this randomness is
also used to generate RSA pairs) and is combined with some reads of the /etc/urandom device that uses
the state of RAM, registers, and other system components to produce entropy.

6 Experiments and results

The objective of the evaluation phase was to analyze the performance of the model after having integrated
both security mechanisms, as well as to detect improvement areas. Given that these schemes propose a
trade-off between performance and security, it is important to quantify the overhead of the
implementation. In particular, the test scenario tries to compare 1) replication times using plain-text
exchanges, 2) replication times using encryption, 3) transfer times using one single communication port,
and 4) transfer times using randomized port switching. Two main experiments were prepared: one to
observe the behavior of the replication model, and one to evaluate how the dynamic port allocation
scheme worked.

Figure 4. Replication time with and without RSA encryption

6.1 Replication results

In order to evaluate the behavior of the replication model, we used nine hosts. First, we performed state
replication in plain text with a variable number of hosts n ∈ {1, 2,..., 9}. Figure 4 shows the results after
10 executions with each configuration. We then tested the model enabling RSA encryption in order to
evaluate the impact of cryptography on the replication model (replication with encryption was performed
with the same number of hosts n). For each n, the experiment was repeated 10 times as well. The figure
shows average times from these executions corresponding to different values of n. As the number of hosts
increases, so does replication time. For plain-text replication, times are short as no time is spent
encrypting the state of the agent using the public key of the recipient (public-key encryption is typically
expensive). It is interesting to observe that, even when the number of hosts increased, replication times
with encryption did not present any dramatic growth. The cost of implementing replication with or

LACCET’2005 – Information Technology Track – Paper No. 38 10

without encryption is low considering the experiment performs remote replication on remote hosts for all
n > 1 shown in the plot.

6.2 Randomized port switching results

Several experiments were conducted in order to determine the performance cost of the dynamic port
allocation scheme. The variable with the most weight is the number of ports included in a packet. This
variable k defines a trade-off between confidentiality level and performance. Given that all exchanges are
peer-to-peer, the experiments consisted of two agent instances exchanging its KB’s. Figure 5 shows the
results. KB’s were transferred in pieces of 256 Kb in size and transmission times were taken for one-way
trips only. The experiment was performed using the following values of k: 1, 25, and 50. Each experiment
was repeated 20 times.

Figure 5. Exchange times using different packet sizes (k) for channel switching

From the above plot we conclude that the performance overhead of the port-switching model is
considerable. The cost of opening and closing TCP connections at different locations increases transfer
times as resources and data structures need to be allocated before exchanging any packet. The benefit,
however, is that packet sniffing is significantly more difficult and that any data chunk captured from this
communication scheme will have to be put together with others in order for it to be meaningful (the
intruder will have to capture and interleave data addressed to different ports; moreover, all exchanges are
encrypted).

No sequence number for packets is provided in the protocol as the switching is entirely managed
internally by the agents. Furthermore, encryption deters confidentiality attacks and, since communications
do not develop at a fixed standard port all the time, an attacker will have to first find the port sequence to
which a socket is bound and those port numbers change permanently using random input.

7 Conclusions

We have presented two techniques that contribute to the survivability of security agents making no
assumption regarding the probabilistic independence of failure or attack. Through local and remote state

LACCET’2005 – Information Technology Track – Paper No. 38 11

replication, agents are able to protect their execution state and to escape subversion attempts. Using a
randomized channel switching reinforced with encryption, agents can deter flooding attempts and
sniffing. The results show that the combination of these techniques is a viable way to prevent common
confidentiality and integrity attacks launched toward agents, and that this solution scales well to a large
number of security agents.

References

Borselius, N. “Mobile agent security”. Electronics & Communication Engineering Journal, 14(5):211–

218, October 2002.

Brugali, D. and Sycara,K. “Towards agent oriented application frameworks”. ACM Computing Surveys,

32(1):21–26, 2000.

Dasgupta, P., Moser, L. E., and Melliar-Smith, P.M. “The security architecture for Magnet: a mobile

agent e-commerce system”. In 3rd International Conference on Telecommunications and E-
commerce, pages 289–298, Dallas, TX, November 2000.

Farmer, W.M, Guttman, J.D., and Swarup, V. “Security for mobile agents: Authentication and state

appraisal”. In 4th European Symposium on Research in Computer Security, pages 118–130, Rome,
Italy, 1996.

Fedoruk, A. and Deters, R. “Improving fault-tolerance by replicating agents”. In 1st International Joint

Conference on Autonomous Agents and Multi-Agent Systems, AAMAS, pages 737–744, Bologna, Italy,
July 15–19 2002.

Guan, X., Yang, Y., and You J. “POM – A mobile agent security model against malicious hosts”. In 4th

International Conference on High-Performance Computing in the Asia-Pacific Region, volume 2,
pages 1165–1166, May 2000. Beijing, China.

Janakiraman, R., Waldvogel, M., and Zhang, Q. “Indra: A peer-to-peer approach to network intrusion

detection and prevention”. In Proceedings of IEEE WETICE 2003, June 2003.

Klevinsky, T.J., Laliberte, S., and Gupta, A. Hack I.T. – Security through Penetration Testing. Addison-

Wesley Longman, 1st edition, February 2002.

Marin, O., Sens, P., Briot, J.P., and Guessoum, Z. “Towards adaptive fault tolerance for distributed

multiagent systems”. In ERSADS 2001, pages 195–201, Bertinoro, Italy, 2001.

McHugh, J. “Intrusion and intrusion detection”. CERT Coordination Center, Carnegie Melon University,

Springer–Verlag, July 2001.

Northcutt, S. and Novak, J. Network Intrusion Detection. New Riders, Indianapolis, IN, 3rd edition,

September 2002.

Pleisch, S. and Schiper A. “Modeling fault-tolerant mobile agent execution as a sequence of agreement

problems”. In 9th IEEE Symposium on Reliable Distributed Systems (SRDS2000), pages 11–20,
Nurnberg, Germany, 2000. IEEE Computer Society.

Sander, T. and Tschudin, C.F. “Protecting mobile agents against malicious hosts”. Lecture Notes in

Computer Science, LNCS, 1419:44–49, February 1998.

LACCET’2005 – Information Technology Track – Paper No. 38 12

Schneider, F.B. “Towards fault-tolerant and secure agentry”. In M. Mavronicolas and P. Tsigas, editors,

11th International Workshop on Distributed Algorithms, WDAG, Berlin, Germany, 1997. Springer
Verlag.

Weiss, G. Multiagent Systems: A Modern Introduction to Distributed Artificial Intelligence. MIT Press,

Cambridge, MA, 1st edition, 1999.

Yee, B.S. “A sanctuary for mobile agents”. In Secure Internet Programming: Security Issues for

Distributed and Mobile Objects, Springer Verlag, Lecture Notes in Computer Science, LNCS, pages
261–273, Berlin, Germany, 1999.

Zamboni, D.M. and Spafford, E.H. “Intrusion detection using autonomous agents”. Computer Networks –

Elsevier, 34(04):547–570, October 2000.

Biographical Information

Salvador Mandujano is a recent PhD graduate from ITESM. He did research with the Center for
Intelligent Systems and the Information Security group at the Monterrey campus and is currently working
for Intel in Hillsboro, USA.

Authorization and Disclaimer

The author authorizes LACCEI to publish this paper in the conference proceedings on CD and on the
Web. Neither LACCEI nor the editors will be responsible either for the content or for the implications of
what is expressed in the paper.

