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Abstract

We prove that in the case of node-independent service rates p, steady-
state distributions in discrete-time for a certain class of Jackson networks,
can be written as a product of the continuous-time steady state distri-
bution and a factor that approaches one in the limit as service rates
go to zero. We conjecture that as p ! 1; steady-state distributions
in discrete-time are uniformly distributed. We use these results to ap-
proximate steady-state distributions for multi-server queueing networks
in discrete-time.

1 Introduction

Queueing Networks has become an area of intensive research. Applications of
this kind of networks can be found in areas as operation research, computer
technology, communications, transportation, electronics, signals processing etc.
The theory was developed as an extension of the single station, single server,
Poisson stream system. In this system, customers arrive at random at the ser-
vice station at a mean rate � per unit of time, a Poisson stream, and are served
according to a service time that has a negative exponential distribution. The
single station case was extended to a system with n nodes, r servers per node,
and arrivals and service protocols that respond according to some probabil-
ity distribution. Jackson [9] was the �rst to propose a comprehensive theory
of queueing networks with his so called product form networks. Jackson de-
veloped a general formula for the steady-state distribution for continuos-time
networks with Poisson arrivals , exponential service time , and independent rout-
ing. Others have developed similar results for di¤erent arriving protocols and
general arrival and service time probability distributions. Gordon and Newell
[8] also produced general results for continuous-time closed and closed cyclic
networks. Continuous-time results were used almost exclusively in modeling
were queueing theory was applicable. Modeling with Jackson�s Product form
networks is particularly important because these networks are analogous to a
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system with servers acting independently thus, simplifying the analysis of the
system performance.
However, for digital processing devices and computer systems, a discrete-

time scale is more appropriate for their modeling. The �rst explicit results on
steady-state behavior of discrete-time closed cyclic networks were published by
Pestien and Ramakrishnan in 1994 [[11]. They used what is now called a di-
rect approach instead of the traditional time-reversibility approach. Up to date,
only two books have been published that formulate comprehensive theoretical
results in the single server case: Queueing Analysis by Takagi (1996) and Queue-
ing Networks with Discrete-time scale by Daduna (2002). Ramakrishnan and
Pestien have,among other publications, a series of results for the ample server
case. There are not many general results published for the intermediate case in
discrete-time , 2 � r < k:
This article develops some exact results and approximations for single, in-

termediate and ample service closed-cyclic discrete-time networks. The devel-
opment is guided by Pestien and Ramakrishnan direct approach method. Of
particular interest is the approximation of steady-state distributions for the two
server case.
This article is dedicated entirely to discrete-time queueing networks. Some

new ideas in �nding stationary distributions are formulated. The main one
shows that the discrete-time stationary distribution can be written in terms of
continuous-time distributions times a predictable factor which is proportional to
the number of states that were visited in the transition from one state to another.
A general result is proven which indicates that in the limit as service probabilities
become small, the stationary distribution of the discrete-time network is the
same as the analog network in continuous-time. This is an important general
result because it provides boundary conditions for the steady state distribution
as a function of service probabilities. This result is used here to approximate
steady-state distributions in the two server case.

2 Basic Description of Queueing Systems

A queueing system can be described as jobs or customers arriving to a service
station to wait for service if this service is not provided immediately After being
served, the job leaves the systems. Some example of queuing systems include a
customer waiting on line at the bank teller, or a computer program waiting to
be run.
Queuing theory provides models to predict the behavior of system perfor-

mance were the arriving process is random. To develop a model, the character-
istics of the system are de�ned. They include : the arrival mechanism of jobs,
the service mechanism of servers, the queue discipline, system capacity, number
of server or channels, and the number of service stations or nodes. The arrival
process is stochastic, therefore it is necessary to describe it with a probability
distribution to predict the time between successively arrivals. There are other
characteristic of the arrival process that may have to be described statically
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that indicate if their is single or bulk arrival and/or if customer are inpatient
or wait fro service inde�nitely. The time between services is also described with
a probability distribution. The description of the service process may need to
include the rate at which server work which in turn may depend on the number
of jobs present and/or if the server serve a single job or a series of parallel jobs.
The queue disciple is generally �rst come �rst serve (FCFS) or last come last
serve (LCLS).

3 Continuous-time factor: Single Server Case

The invariant distribution for a discrete-time closed-cyclic queueing network
with n-nodes , k-jobs and ri = 1 server per node is given in [?] by

� (s) = G�1

24 Y
j =2OCC(s)

qj

3524n�1Y
j=0

�
qj
pj

�sj35 (1)

where

G =
X
s02S

24 Y
j =2OCC(s0)

qj

3524n�1Y
j=0

�
qj
pj

�s0j35
is the normalizing constant and whereOCC(s) is the set of indexes j = 0; � � � ; n�
1 for which node j is not empty. We will show that this distribution can be
written in product form where one of the factors is the continuous-time invariant
distribution for the equivalent network. This will allow as to develop asymptotic
behavior results for discrete time queues. The continuous-time distributions for
this network is well known [7] and it is given in the following proposition.

Proposition 1 Consider a continuous-time single-server close cyclic network.
Let


(s0; s1; ::; sn�1) =
n�1Y
i=0

�k�sii (2)

where k =
n�1X
i=0

si; and �i is the service rate at node i for 0 � i � n � 1: Then,


 is an equilibrium vector for the queue lengths

Theorem 2 Consider the following distribution de�ned on the state space of a
discrete-time closed-cyclic network with n-nodes , k-jobs and ri = 1 server per
node,


 (s) =

"
n�1Y
i=0

pk�sii

#"
n�1Y
i=0

q
si��(si)
i

#
: (3)

where

� (si) =

�
1 if si > 0
0 Otherwise
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then 
 is an invariant vector
Proof. It su¢ ces to show that 
=� where � is given in (1) is a constant. We
have


 (s)

�(s)

=

24n�1Y
j=0

p
k�sj
j

3524n�1Y
j=0

q
sj��(sj)
i

35
G�1

24 Y
j =2OCC(s)

qj

3524n�1Y
j=0

�
qj
pj

�sj35

= G

n�1Y
j=0

pkj �
n�1Y
j=0

p
�sj
j �

n�1Y
j=0

q
sj
j �

n�1Y
j=0

q
��(sj)
j

n�1Y
j=0

q
1��(sj)
j �

n�1Y
j=0

q
sj
j �

n�1Y
j=0

p
�sj
j

= G

24n�1Y
j=0

pj

35k
24n�1Y
j=0

qj

35�1
; which is a constant

Notice that the �rst factor in (3) is an invariant vector for the corresponding
continuous-time network with transition rate pi at node i: Thus, the invariant
distribution for the discrete-time network may be viewed as the perturbation of
the invariant distribution of continuous-time distribution.
We will us this form of the invariant vector to investigate the dynamics in

moving from one state to another in a one-step transition.

Example 3 Consider the state s = (3242) with k = 11 and the function 
(s)
as described in 3. Now consider all possible transitions to s:
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Moves v 
(v) 
(v) � p(v; s) factoring 
(s)
0 (3242) p80p

9
1p
7
2p
9
3q
2
0q1q

3
2q3 p80p

9
1p
7
2p
9
3q
3
0q
2
1q
4
2q
2
3 
 (s) q0q1q2q3

1 (4142) p70p
10
1 p

7
2p
9
3q
3
0q
3
2q3 p80p

10
1 p

7
2p
9
3q
3
0q1q

4
2q
2
3 
 (s) p1q0q2q3

(3332) p80p
8
1p
8
2p
9
3q
2
0q
2
1q
2
2q3 p80p

9
1p
8
2p
9
3q
3
0q
2
1q
3
2q
2
3 
 (s) p2q0q1q3

(3251) p80p
9
1p
6
2p
10
3 q

2
0q1q

4
2 p80p

9
1p
7
2p
10
3 q

3
0q
2
1q
4
2q3 
 (s) p3q0q1q2

(2243) p90p
9
1p
7
2p
8
3q0q1q

3
2q
2
3 p90p

9
1p
7
2p
9
3q
2
0q
2
1q
4
2q
2
3 
 (s) p0q1q2q3

2 (4232) p70p
9
1p
8
2p
9
3q
3
0q1q

2
2q3 p80p

10
1 p

8
2p
9
3q
3
0q1q

3
2q
2
3 
 (s) p1p2q0q3

(4151) p70p
10
1 p

6
2p
10
3 q

3
0q
4
2 p80p

10
1 p

7
2p
10
3 q

3
0q1q

4
2q3 
 (s) p1p3q0q2

(3143) p80p
10
1 p

7
2p
8
3q
2
0q
3
2q
2
3 p90p

10
1 p

7
2p
9
3q
2
0q1q

4
2q
2
3 
 (s) p0p1q2q3

(3341) p80p
8
1p
7
2p
10
3 q

2
0q
2
1q
3
2 p80p

9
1p
8
2p
10
3 q

3
0q
2
1q
3
2q3 
 (s) p2p3q0q1

(2333) p90p
8
1p
8
2p
8
3q0q

2
1q
2
2q
2
3 p90p

9
1p
8
2p
9
3q
2
0q
2
1q
3
2q
2
3 
 (s) p0p2q1q3

(2252) p90p
9
1p
6
2p
9
3q0q1q

4
2q3 p90p

9
1p
7
2p
10
3 q

2
0q
2
1q
4
2q3 
 (s) p0p3q1q2

3 (4241) p70p
9
1p
7
2p
10
3 q

3
0q1q

3
2 p80p

10
1 p

8
2p
10
3 q

3
0q1q

3
2q3 
 (s) p1p2p3q0

(3233) p80p
9
1p
8
2p
8
3q
2
0q1q

2
2q
2
3 p90p

10
1 p

8
2p
9
3q
2
0q1q

3
2q
2
3 
 (s) p0p1p2q3

(2342) p90p
8
1p
7
2p
9
3q0q

2
1q
3
2q3 p90p

9
1p
8
2p
10
3 q

2
0q
2
1q
3
2q3 
 (s) p0p2p3q1

(3152) p80p
10
1 p

6
2p
9
3q
2
0q
4
2q3 p90p

10
1 p

7
2p
10
3 q

2
0q1q

4
2q3 
 (s) p0p1p3q2

4 (3242) p80p
9
1p
7
2p
9
3q
2
0q1q

3
2q3 p90p

10
1 p

8
2p
10
3 q

2
0q1q

3
2q3 
 (s) p0p1p2p3

by factoring 
(s) we have that for sj > 0;


(v) � p(v; s)

= 
(s) �

24 Y
j:node j received a job

pj

35 �
24 Y
j:node j did not received a job

qj

35
�

The following lemma , which proves the result in the example above, per-
haps provides a better insight into why 
 is invariant. As before, let s be the
state that results in a one-step transition from state v with movement vector
(m0;m1; :::;mn�1) i.e. for each i , mi jobs move to node i:

Lemma 4 Assume a discrete closed cyclic single-server queueing network. Let
ŝ be a state obtained from v̂ in a one step transition. For s 2 S;


 (v)P (v; s) = 
 (s)
n�1Y
j=0

p
mj

j

n�1Y
j=0

q
�(sj)�mj

j

where 
 and � are de�ned by (3).
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Proof. 
 (v) � P (v; s) equals,24n�1Y
j=0

p
k�vj
j

3524n�1Y
j=0

q
vj��(vj)
j

35 �
24n�1Y
j=0

p
mj�1
j

3524 n�1Y
j:vj>0

q
1�mj�1
j

35

=
n�1Y
j=0

p
k�(sj�mj+mj�1)
j

n�1Y
j=0

q
(sj�mj+mj�1)��(vj)
j

n�1Y
j=0

p
mj�1
j

n�1Y
j=0

q
�(vj)�mj�1
j

=

24n�1Y
j=0

p
k�sj
j

3524n�1Y
j=0

q
sj��(sj)
j

35 �
24n�1Y
j=0

p
mj

j

3524n�1Y
j=0

q
�(sj)�mj

j

35

= 
 (s)

24n�1Y
j=0

p
mj

j

3524n�1Y
j=0

q
�(sj)�mj

j

35
Now, let v ! s indicate that state s resulted for state v in a one-step

transition. Let

R(v; s) =

24n�1Y
j=0

p
mj

j

3524n�1Y
j=0

q
�(sj)�mj

j

35 (4)

Lemma 5 Assume a discrete closed cyclic single-server queueing network. Let
R(v; s) be de�ned as (4), then X

v:v!s

R(v; s) = 1

Proof. Consider the expression �(si) as de�ned in (3) and the movement vector
(m0;m1; :::;mn�1) then mi � �(si) for all i: SoX
v:v!s

R(v; s) =
X

m=(m0;m1;:::;mn�1)

n�1Y
i=0

pmi
i

n�1Y
i=0

q
�(si)�mi

i =
n�1Y
i=0

(pi + qi)
�(si) = 1

Using Lemma 4, we can provide a very elementary prove showing that 
 is
invariant.

Theorem 6 For a single server closed cyclic network, let 
 be a vector on S
de�ned by


 (s0; s1; ::; sn�1) =
n�1Y
i=0

pk�sii

n�1Y
i=0

q
si��(si)
i

where �(si) is de�ned in (2), then 
 is an equilibrium vector for P
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Proof.
X
v2S


(v)p(v; s) equals

X
v2S


(s) �R(v; s) = 
(s)
X
v:v!s

R(v; s) = 
(s)

4 Continuous-time factor: Ample Service Case

For the case where there is ample waiting room , ri � k for each i; the discrete-
time invariant distribution is actually the same as the continuous-time for an
equivalent network. I think this remarkable result was not suggested in the
literature because ample service distributions in discrete-time were developed
by Ramakrishnan and Pestien fairly recently.
The discete-time invariant distribution is given in [11] by

� (s) =
k!

s0! � � � sn�1!

n�1Y
i=0

�sii (5)

where

�i =
1=pi

n�1X
j=0

1=pj

Theorem 7 Consider a closed cyclic network with ample service, then the con-
tinuous time invariant distribution is given by the discrete-time invariant dis-
tribution (5) with �0is replacing p

0
is

Proof. If � is invariant for Q, then , for the state (s0; s1; � � � ; sn�1) withPn�1
i=0 si = k, we must have,

� (s0 + 1; s1 � 1; s2; � � � ) (s0 + 1)�0 + � � �+ (6)

� (s0; s1; � � � ; si + 1; si�1 � 1; � � � ) (si + 1)�i + � � �+

� (s0; s1; � � � ; sn�1) (��0s0 � �1s1 � � � � � �n�1sn�1)

= 0

must be equal to zero. It su¢ ces to show that the discrete-time invariant dis-
tribution given in (5) with with �0is replacing p

0

is satis�es the expression above
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since the invariant distribution is unique. Using (6) notice that

� (s0; s1; � � � ; si + 1; si�1 � 1; � � � ) (si + 1)�i

=
k!

s0! � � � (si + 1)! (si�1 � 1)! � � �
�s00 � � � �

si+1
i �

si�1�1
i�1 � � � �sn�1n�1 (si + 1)�i

= � (s0; s1; � � � ; sn�1) si�1�i �
�i
�i�1

Therefore, the left side of (6) becomes

� (s0; s1; � � � ; sn�1)
"
n�1X
i=0

�isi�1 �
�i
�i�1

�
n�1X
i=0

�isi

#

Since (see 5)
�i
�i�1

=
1=�i
1=�i�1

=
�i�1
�i

Hence, the left-side of (6) further reduces to

� (s0; s1; � � � ; sn�1)
"
n�1X
i=0

�i�1si�1 �
n�1X
i=0

�isi

#
which is equal zero.

I think this result is important because it says that, with ample waiting room,
discrete-time networks can be view as continuous-time networks Therefore, all
the performance measures in discrete-time can be analyzed using continuous-
time results. In fact , it is now clear why the arrival theorem in discrete-time
and continuous-time in the ample service case give us the same results. It is also
important to notice that cellular communication is based on the transmission of
cells of information of equal length, therefore their analysis is better understood
using a discrete-time scale This result may provide some insight in the case
where there is ample service in this space.

5 Continuity Results in the intermediate case

The intermediate case denotes the case where 2 � r < k: In this case we think
that the continuous-time distribution for the equivalent network is not a mul-
tiplication factor of the discrete distribution. The following example compares
the two distributions for the case where n = 2; ri = 2
For a closed cyclic network with n = 2; ri = 2; an invariant vector for the Q

matrix Q in continuous-time is given by�
p31; 2p

2
1p0; 2p1p

2
0; p

3
0

	
(7)
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In discrete-time an invariant vector for the transition matrix P is given by

f�4p31 + 4p41 � p51 + 7p31po � 6p41po + p51po � 4p31p2o + p31p3o + 2p41p2o; (8)

�8p21po + 8p31po � 2p41po + 10p21p2o � 3p21p3o � 10p31p2o + 2p31p3o + 2p41p2o;
�8p1p2o + 8p1p3o � 2p1p4o + 10p21p2o � 10p21p3o � 3p31p2o + 2p21p4o + 2p31p3o;
�4p3o + 4p4o � p5o + 7p1p3o � 6p1p4o + p1p5o � 4p21p3o + 2p21p4o + p31p3og

Now , if the service rate remains constant from node to node, (7) becomes�
p3; 2p3; 2p3; p3

	
and (8) becomes

fp� 1; p� 2; p� 2; p� 1g

After normalizing (7) the unique invariant distribution for Q is�
1

6
;
2

6
;
2

6
;
1

6

�
(9)

and after normalizing (8) , the unique invariant distribution for P is�
p� 1
4p� 6 ;

p� 2
4p� 6 ;

p� 2
4p� 6 ;

p� 1
4p� 6

�
(10)

Comparing (9) and (10) we see that it is not possible to factor the continuous-
time distribution to get a product form for the discrete-vector. However , in
the limit as the rate goes to zero, the two distributions are the same. We will
explore this observation farther in the next section.

6 Intermediate Case: Limit Results

The main result of this section is to show that in the limit, the discrete-time
invariant distribution approaches the continuos-time counterpart even in the
intermediate case (2 � ri < k). We will establish one important result that
shows that there is a limiting relationship between the P � matrix for the
discrete network and Q�matrix for the continuous network. This in turn helps
to prove the result mentioned above.

Theorem 8 Let Q be the transition-rate matrix of a continuous-time cyclic
network with k jobs , n nodes , ri independent servers per node at each node ,
each with service rate �. Let P be the transition matrix of a discrete-time cyclic
network with k jobs , n nodes , ri independent servers per node at each node ,
each with service probability p. Then,

lim
p!0

1

p
[P � I] = 1

�
Q (11)
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Proof. Let o(p) denote a function of p satisfying limp!0
o(p)
p = 0

Let

�i(si) =

�
si if si � ri
ri if si > ri

First note that for q = 1� p, we have

qn � 1 = (q � 1)
n�1X
i=0

qi = �p
n�1X
i=0

qi

Hence
lim
p!0

1

p
(qn � 1) = �n (12)

Now consider any state s = (s0; s1:::; sn�1) : The system remains in this state
after a one-step transition with a probability q�(s0)+���+�(sn�1) + o(p): Hence
the s; sth entry of the matrix (P � I) is given by

(P � I)s;s = q
Pn�1

i=0 �(si) + o(p)� 1

Therefore,

lim
p!0

1

p
(P � I)s;s

= lim
p!0

1

p

�
q
Pn

i=1 �(si) + o(p)� 1
�

= �
n�1X
i=0

�(si) , using (12) and the de�nition of o(p)

Hence,

=
1

�
Qs;s by the de�nition of Q (13)

Now note that for any state s0 6= s that results in a one-step transition from s
only if more than one movement occurs, we have

Qs;s0 = 0

Also,

lim
p!0

1

p
(P � I)s;s = lim

p!0

1

p
Ps;s = lim

p!0

1

p
o(p) = 0

Hence
lim
p!0

1

p
(P � I)s;s0 =

1

�
Qs;s0 (14)
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Finally consider a state s00 6= s which can result from s in a one-step transition
with only one movement occurring at node i (where i 2 f0; 1; � � � ; n� 1g : Then
we have,

Qs;s00 = �(si)�

Also,

lim
p!0

1

p
(P � I)s;s00 = lim

p!0

1

p
Ps;s00

= lim
p!0

1

p
[� (si) p+ o(p)] = �(si)

Hence,

lim
p!0

1

p
(P � I)s;s00 =

1

�
Qs;s00 (15)

Therefore by (13), (14) and (15) the proof is completed.

Theorem 9 Let � be steady-state distribution in continuos-time for a closed
cyclic network with n nodes, k jobs, and r independent servers at each node
with service rate �. Let �d be the steady-state distribution for the discrete-time
network with n nodes, k jobs, and r independent servers per node with service
probability p: Then,

lim
p!0

�d = � (16)

Proof. As before, let Q be the transition rate matrix for the continuous-time
network, and let P be a transition matrix for the discrete-time network , repet-
itively. Also, we let �d(p) indicate the discrete-time distribution evaluated at p.
We will show that, given any sequence pn ! 0, every convergent subsequence
of f�d(p)g converges to �: This shows that limp!0 �d exist and equals �. We
have,

�d(p) � P = �d (17)

so
�d(p) (P � I) = 0

equivalently,

�d(p)
1

p
(P � I) = 0 (18)

So, let pn be a sequence satisfying pn ! 0: If fpnig is a subsequence such that
f�d(pni)g has a limit, say �̂ then, �̂ must be a probability vector, since, for each
p, �d(p) is also. By theorem 8 we must have

�̂
1

�
Q = 0

i.e.
�̂Q = 0 (19)

Since � is the unique probability vector that satis�es �Q = 0, we must have,
�̂ = �: This completes the proof.
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7 Asymptotic Behavior as P ! 1

We have shown above that for all discrete-time cyclic queueing networks, the
steady-state distribution approaches the continuos-time invariant distribution
as p ! 0. We would like to know the limiting behavior of the discrete dis-
tributions as p ! 1: Using these two results and the fact that these functions
are monotonic, we can develop algorithms for their approximations. This is
signi�cant because there are not general formulas for discrete-time invariant
distributions in the intermediate case , 2 � r < k: Even in the case of two
servers per node, and constant service rates, the distribution are very complex.

Conjecture 10 As p ! 1; in a one step transition, multiple services will be
completed with certainty; therefore, if there are su¢ ciently many jobs , the
servers will be occupied at all times since jobs will move to the servers as soon
as they are idle. If the number of jobs k is greater than the number of nodes n
times the number of servers per node r; (k > n � r), in steady-state, each node
i will have r jobs at the r servers and the rest of the jobs will be uniformly
distributed.

An argument for the proof of the conjecture would be as follows: consider
a cyclic queueing network with n nodes, k jobs , and r independent servers per
node with constant service probability p: Let

�(si) =

�
si if si � r
r if si > r

Let s = (s0; s1; ::; sn�1) be a state that results from state s0 with a movement
vector ms0 = (m0;m1; :::;mn�1). then,

P (s0; s) =
n�1Q
i=0

pmi �
n�1Q
i=0

q�(si)�mi ;

hence, for 0 � i � n� 1, and q = 1� p

lim
p!1

P (s0; s) =

�
0 if mi < �(si) for any i
1 if mi = �(si) for all i

Now, since � is invariant P
s02S

�(s0)P (s0; s) = �(s)

We can show that for all states s, the limit as p ! 1 exist using similar
arguments as in theorem 9. Therefore,

lim
p!1

P
s02S

�(s0) � P (s0; s) = lim
p!1

�(s)

P
s02S

lim
p!1

�(s0) � lim
p!1

P (s0; s) = lim
p!1

�(s)

12



The expression on the left is zero except for those s0 that move to s with move-

ment vector ms0 =
�
�(s

0

0); �(s
0

1); :::; �(s
0

n�1)
�
: Then, for these s0; we have,P

s0
lim
p!1

�(s0) = lim
p!1

�(s)

If s results form s with a movement vector �((s0); �(s1); :::; �(sn�1)), the ex-
pression above reduces to, P

s0 6=s
lim
p!1

�(s0) = 0

What this means is that for su¢ ciently large k, (k � n � r), every state s0 that
reaches s with movement vector

�
�(s

0

0); �(s
0

1); :::; �(s
0

n�1)
�
is transient and

lim
p!1

�(s0) = 0

Also, s is a recurrent state. So, the proof reduces to showing that the steady-
state distribution in the limit as p! 1 is uniform among recurrent states.
In the case where r = 2; uniformity of the steady-state as p ! 1 could be

argued as follows: �x a state s = (s0; s1) with �(si) > r for i = 0; 1: Consider
states v = (s0 + 1; s1 � 1) ; then �(vi) � r for i = 0; 1: Then, the balance
equation is given by,

�p(s0; s1)

= �(s0; s1)p
2r + �(s0 + 1; s0 � 1)rp2r�1q + rp2r�1�(s0 + 1; s0 � 1) + o(q)

Now, due to the symmetry �(s0 + 1; s0 � 1) = �(s0 � 1; s0 + 1). So,

(1� p2r)�p(s0; s1) = 2rp2r�1q�(s0 + 1; s0 � 1) + o(q)

hence

�p(s0; s1) =
2rp2r�1�(s0 + 1; s0 � 1)
(1 + p+ p2 + � � �+ p2r�1) +

o(q)

q
� 1

(1 + p+ p2 + � � �+ p2r�1)

so, as p! 1;
�p(s0; s1) = �p(s0 + 1; s1 � 1) = �p(v)

The above example lead us to believe that the invariant distribution in the
limit as p! 1 is uniform.

Example 11 Assume a network of two nodes and two servers per node. As-
sume that there are k = 4 jobs. The only state with �(si) � r for i = 1; 2 is
(2; 2). Therefore, based on the conjecture limp!1 �(2; 2) = 1; and limp!1 � (s1; s2) =
0 otherwise.

13



The steady-state distribution of this network was calculated directly using
the theory of Markov chains (positive recurrent, irreducible). The steady-state
distribution as a function of p; is

�(4; 0) =
�7p+ 10p2 � 7p3 + 2p4 + 2
�47p+ 60p2 � 36p3 + 8p4 + 16

�(3; 1) =
�12p+ 16p2 � 10p3 + 2p4 + 4
�47p+ 60p2 � 36p3 + 8p4 + 16

�(2; 2) =
�9p+ 8p2 � 2p3 + 4

�47p+ 60p2 � 36p3 + 8p4 + 16

�(1; 3) =
�12p+ 16p2 � 10p3 + 2p4 + 4
�47p+ 60p2 � 36p3 + 8p4 + 16

�(0; 4) =
�7p+ 10p2 � 7p3 + 2p4 + 2
�47p+ 60p2 � 36p3 + 8p4 + 16

We observe that

lim
p!1

�(4; 0) = lim
p!1

�(0; 4) = 0

lim
p!1

� (3; 1) = lim
p!1

� (1; 3) = 0

lim
p!1

� (2; 2) = 1

In general for n = 2; r = 2; and k jobs; the only states that would not have
two jobs in every node are (k; 0), (0; k) ,(k � 1; 1) and (k; k � 1) : Since there
are k + 1 states in the state space, based on the conjecture, the steady-state
distribution as p! 1 will be uniform for states with s0 � 2 and s1 � 2. Hence,

lim
p!1

�(s0; s1) =
1

k � 3
for states with s0; s1 � 2.

8 Approximation of the Queue Length: M/2/2
network with constant service rate

In this section we will study in detail the two nodes, two server per node discrete-
time cyclic network. These networks do not have a product form invariant
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distribution even when the service rate is constant
The distribution for the M=2=2 network in continuous-time with constant

service rate is given in [8] as

�(k; 0) = �(0; k) =
c

2k�1

and
�(k � 1; k) = �(k; k � 1) = c

2k�2

if j � 2
�(k � j; j) = c

2k�h2h�1
=

c

2k�2

Since the sum of the probabilities is 1, then

2 � c

2k�1
+ 2 � c

2k�2
+ (k + 1� 4) c

2k�2
= 1

so
3c+ (k � 3) c = 2k�2

or

c =
2k�2

2

Therefore ,

�(k; 0) = �(0; k) =
2k�2

2

1

2k�1
=
1

2k

and

�(k � 1; k) = �(k; k � 1) = 2k�2

2

1

2k�2
=
1

k

and for j � 2

�(k � j; j) = �(j; k � j) = 2k�2

2
� 1

2k�2
=
1

k

Using (16) we conclude that for discrete-time networks with two nodes and two
servers per node,

lim
p!0

�d(k; 0) = lim
p!0

�d(0; k) =
1

2k
(20)

and for s1 6= 0; s2 6= 0
lim
p!0

�(s1; s2) =
1

k
: (21)

The behavior of the steady-state distribution as p! 1 can be analyzed using
the conjecture above. For large k, since at each one-step transition multiple
services take place, the two nodes will be occupied with two jobs at each of
their two servers; the rest of the k� 4 jobs will be uniformly distributed among
the nodes. There are k + 1 states in the state space of this system. Therefore,
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as the service rate goes to one, the invariant distribution for states with at most
one job at a node goes to zero. Hence,

lim
p!1

�(k; 0) = lim
p!1

�(0;K) = 0

and
lim
p!1

�(k � 1; 1) = lim
p!1

�(1;K � 1) = 0

The probability distribution is uniform in the remaining k+1�4 = k�3 states.
Therefore if s1 � 2; and s2 � 2

lim
p!1

�(s1; s2) =
1

k � 3

Another important observation about this network is that the steady-state dis-
tribution is completed determined by �(k; 0) and �(k�1; 1) and a set of recursive
equations. Notice that part of the transition matrix for this Markov chain is

� (k; 0) � (k � 1; 1) � (k � 2; 2) � (k � 3; 3)
� (k; 0) q2 2pq p2 0
� (k � 1; 1) pq2 q3 + 2p2q p3 + 2pq2 p2q
� (k � 2; 2) p2q2 2p3q + 2pq3 p4 + q4 + 4p2q2 2pq3 + 2p3q
� (k � 3; 3) 0 p2q2 2p3q + 2pq3 p4 + q4 + 4p2q2

� (k � 4; 4) 0 0 p2q2 2p3q + 2pq3

� � � 0 0 0 p2q2

� � � 0 0 0 0
� � � 0 0 0 0

If we used the notation �j to indicate a state with j jobs in node one. Then,
the balance equations are of the form

�0q
2 + �1pq

2 + �22p
2q2 = �0

Solving for � (k � 2; 2), we have that

�2p
2q2 = �0

�
1� q2

�
� �1pq2

hence � (k � 2; 2) is complete determined by �0 and �1.Similarly ,

�02pq + �1
�
q3+2p2q

�
+ �2

�
2p3q + 2pq3

�
+ �3p

2q2 = �1

solving for � (k � 3; 3)we have that

�3p
2q2 = �1

�
1� q3 � 2p2q

�
� �02pq � �2

�
2p3q + 2pq3

�
but � (k � 2; 2) can be written in terms of �0 and �1, therefore � (k � 3; 3) can
also be written in term of �0 and �1: In general, the balance equation has the
form

�n+2p
2q2 = �n(1� p4 � q4 � 4p2q2)� 2�n�1

�
2p3q + 2pq3

�
� 4�n�2p2q2:

16



These equations can be solve recursively in terms of �0 and �1: Hence , we will
concentrate in �nding methods to estimate �0 and �1 for any k:
We have found the steady-state distribution for di¤erent values of k: The fol-

lowing are the probability distributions of �0 for k = 4; 5, and 6. The probability
distributions are given here,

�(4; 0) =
�7p+ 10p2 � 7p3 + 2p4 + 2
�47p+ 60p2 � 36p3 + 8p4 + 16

�(5; 0) =
�6p+ 7p2 � 4p3 + p4 + 2

�46p+ 46p2 � 22p3 + 4p4 + 20

�(6; 0) =
�18p+ 37p2 � 43p3 + 29p4 � 11p5 + 2p6 + 4

�178p+ 322p2 � 322p3 + 188p4 � 60p5 + 8p6 + 48

The �gure below shows the graph of these distributions.

Figure 1: Probabilities for k = 0

These sequence of functions appear to be decreasing proportionally and con-
vergent. Using (16), The percentage decrease at p = 0 is

1=2(k + 1)

1=2k
=

k

k + 1
(22)

hence, we will approximate

�(k + 1; 0) � k

k + 1
� �(k; 0): (23)

This approximation is expected to get better as k !1: These graphs also show
that limp!1 �(k; 0) = 0 as expected based on the conjecture.
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Example 12 We found �(9; 0) by direct computation,

�d(9; 0) =
�40p+ 96p2 � 140p3 + 133p4 � 84p5 + 34p6 � 8p7 + p8 + 8

�584p+ 1224p2 � 1540p3 + 1274p4 � 686p5 + 234p6 � 46p7 + 4p8 + 144
On the other hand , using (22) �d(9; 0) is approximately,

8

9
�(8; 0)

=
8

9

�44p+ 116p2 � 185p3 + 192p4 � 132p5 + 58p6 � 15p7 + 2p8 + 8
�588p+ 1368p2 � 1909p3 + 1742p4 � 1033p5 + 388p6 � 84p7 + 8p8 + 128

The following �gure shows the graphs of the invariant distribution and its
approximation (dotted line).

Figure 2 : Probabilites approximation for k = 8

This approximation is remarkably good.

It is di¢ cult to �nd invariant distributions for large k because of the number
of calculations involved in �nding the inverse of the transition matrix. Most
software package can handle up to 20 by 20 matrices.
In general, using the approximation recursively , we get the following ex-

pression:

�0 (k) � k � 1
k

�0 (k � 1)

=
k � 1
k

k � 2
k � 2�0 (k � 2)

=
k � 1
k

k � 2
k � 1

k � 3
k � 2 � � �

k � r
k � r + 1�(k � r; 0)

=
k � r
k

�(k � r; 0)
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Now we will perform the same kind of analysis for �1. The following are the
distributions of �1 for k = 4,5, and 6,

� (4; 1) =
�10p+ 11p2 � 6p3 + p4 + 4
�46p+ 46p2 � 22p3 + 4p4 + 20

� (5; 1) =
�16p+ 31p2 � 34p3 + 22p4 � 8p5 + p6 + 4

�89p+ 161p2 � 161p3 + 94p4 � 30p5 + 4p6 + 24

� (6; 1) =
�28p+ 48p2 � 47p3 + 27p4 � 9p5 + p6 + 8

�176p+ 276p2 � 240p3 + 122p4 � 34p5 + 4p6 + 56

The �gure shows the graphs of the distributions as functions p

Figure 3 : Probabilities for k = 1

These sequence of functions appear to be decreasing proportionally and con-
vergent. Using (23), the percentage decrease is

1=(k + 1)

1=k
=

k

k + 1

hence we will approximate

�(k; 1) � k

k + 1
� �(k � 1; 1):

This approximation is expected to get better as k !1: The graphs also show
that limp!1 �(k � 1; 1) = 0 as expected based on the conjecture.
In general , �1(k) will be approximated recursively with the highest known

distribution using the following approximation
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�1 (k) � k � 1
k

�1 (k � 1)

=
k � 1
k

k � 2
k � 1�1 (k � 2)

=
k � 1
k

k � 2
k � 1

k � 3
k � 2 � � �

k � j
k � j + 1�(k � j; 1)

=
k � j
k

�(k � j; 1)

Example 13 Using this method we approximated the distribution for k = 14
suing k = 12. we have ,

�(14; 0) � 13

14

12

13
� �(12; 0) � 0:02593

�(13; 1) = �(1; 13) � 13

14

12

13
� 0:06192

Therefore , using balance equations in terms of �0 and �1 we have,

�(12; 2) = �(2; 12) � 0:07508

� (11; 3) = � (3; 11) � 0:07596

� (10; 4) = � (4; 10) � 0:07578

� (9; 5) = � (5; 9) � 0:075870

� (8; 6) = � (6; 8) � 0:07586

� (7; 7) = � (7; 7) � 0:07580

Exercise 14 notice that
P
�i = 2 � 0:466 43 + 7: 5870� 10�2 = 1:008 � 1:0

Another way that can be use to check if the approximations are acceptable is
by using them in calculating the expected number of customer at a given node
which is a know quantity.

Lemma 15 For a closed cyclic network with n nodes , r = 2 servers per node ,
k jobs and constant service rate p; the expected number of jobs at the �rst node
is k

2
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Proof. Do to the symmetry �(j; k � j) = �(k � j; j) and

j�(j; k � j) + (k � j)�(k � j; j) = k�(j; j � k)

so

E[Jobs at the �rst node] (24)

=
kX
j=0

j�(j; k � j)

If k is odd the above expression is equal

= k

k=2X
j=0

�(j; j � i) = k

2

If k is even, (4.15) equals

k

k=2X
j=0

�(j; k � j) + k
2
�

�
k

2
;
k

2

�

=
k

2

In the example 37 , using the approximation results,

E[jobs at node one]

= 14 � (0:026 + 0:062 + 0:075 + 0:076 + 0:076 + 0:076 + 0:076) + 7 � 0:076

= 7:07 � k

2

Conclusion 16 Finding equilibrium vectors for discrete-time queueing networks
is more di¢ cult because events can happen simultaneously in an interval of
time. However, in some cases, discrete distributions can be written in term of
continuous-time distributions. Continous-time invariant vectors are well known
in the literature. They are use to study the network performance measures.
Therefore, it may be possible to investigate performance indicators of discrete-
time networks using the fact that in some cases discrete-time distributions are
perturbations of the continuous-time distributions for the equivalent network.
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