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ABSTRACT 
Based on the analysis of published results by researchers working in Physics Education Research, we’ll be 
arguing that one of the major difficulties to overcome in the teaching of introductory physics courses for 
engineers could be associated to the lack of a consistent and coherent methodological teaching framework  which 
integrates both conceptual and mathematical reasoning aspects, in a systemic way of thinking. In fact, a large 
body of published research shows that students have strong difficulties in expressing, interpreting, and operating 
physical results in mathematical terms We will be presenting a plausible six steps problem-solving strategy, that 
could be applied to tackle the aforementioned difficulty. 
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1. INTRODUCTION 

We might all agree that the role of mathematics in the education of students majoring in engineering is vital, not 
only in order to understand the fundamentals that sustain many of the mathematical models used in engineering, 
but to enhance students’ analytical reasoning skills. It is also an undeniable true that it is in physics classes where 
students can start to apply what they have learned in their math classes and to find new non-formal approaches to 
performing computations. 

The importance of being able to express, interpret and manipulate physical results in mathematical terms was also 
stressed by the great physicist Lord Kelvin “I often say that when you can measure something and express it in 
numbers, you know something about it. When you can not measure it, when you can not express it in numbers, 
your knowledge is of a meager and unsatisfactory kind. It may be the beginning of knowledge, but you have 
scarcely in your thoughts advanced to the state of science, whatever it may be.” (Hewitt, 1993) Freeman Dyson 
was more eloquent “...mathematics is not just a tool by means of which phenomena can be calculated; it is the 
main source of concepts and principles by means of which new theories can be created.”(Dyson, 1964) 

Now, being physics intrinsically a quantitative based subject, much of the recent research favors an overemphasis 
on qualitative (conceptual) physical aspects (Mualem and Eylon, 2007; Hoellwarth et al., 2005; Sabella and 
Redish, 2007; Walsh et al., 2007), while standard mathematical abilities, which are crucial for understanding 
physical processes, are not stressed, or even taught, because, rephrasing a passage from a recent editorial(Klein, 
2007), they interfere with the students’ emerging sense of physical insight. Consequently, physics instructors face 
the problem of finding suitable advice on how to approach the teaching of physics in the most efficient way and 
an answer to the question of how much time should be spent on intuitive conceptual reasoning and how much 
time in developing quantitative reasoning. Thus, the panorama regarding the learning of physics is even more 
dramatic on the side of the students, as for a typical course work for students majoring in engineering they usually 
must take more than one physics class. It could happen that in one term his/her physics instructor may emphasize 
quantitative reasoning over conceptual analysis, and in another term the respective instructor could rather 
accentuate conceptual learning over quantitative analysis, likely causing confusion on students, leading them to 
wonder which emphasis is correct. 
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2. ABOUT THE PROBLEM 
 

It is not difficult to find published results in Physics Education Research where it is shown directly or indirectly 
the inability of students to express, interpret, and manipulate physical results in mathematical terms. That is, 
students shows a clear deficiency in their training to exploit the mathematical solution of a problem (which 
usually is obtained mechanically or by rote procedures) to enhance their knowledge regarding conceptual physics 
(Hammer, 1996; Sabella and Redish, 2007; Rimoldini and Singh, 2005; Meredith and Marrongelle, 2008). In fact, 
after compiling and analyzing students’ performance on some tests dealing with rotational dynamics 
computations, it has been found that most of the students, including an honor class, failed to perform standard 
computations of rotational inertia on simple geometries involving the computation of one dimensional 
uncomplicated integrals (Rojas, 2008). 

More important, the compilation and analysis of published excerpts of student’s responses to interviews 
conducted by some researchers, using the think-aloud methodology to further understand students’ way of 
reasoning while solving physics problems, shows that students lack of a structured methodology for solving 
physics problems (Hammer, 1996; Rimoldini and Singh, 2005; Sabella and Redish, 2007; Walsh et al., 2007). 

These findings can not be surprising at all. In fact, none of the most commonly recommended physics textbooks 
(i.e. (Halliday et al., 2000; Tipler and Mosca, 2003; Serway and Jewett, 2003)) make use of a consistently and 
clear problem-solving methodology when presenting the solution of the textbook worked out illustrative 
examples. Moreover, the lack of a coherent problem-solving strategy can also be found in both the student and 
instructor manual solutions that usually accompany textbooks. Generally, standard textbooks problem-solving 
strategies encourage the use of a formula based scheme as compiled by the formulae summary found at the end of 
each chapter of the text, and this strategy seems to be spread out even in classroom teaching (Hamed, 2008). 
Consequently, students merely imitates the way in which problems are handled in the textbooks. 

3. A SYSTEMIC PROBLEM-SOLVING TECHNIQUE 
Thus, a moment of though about the above summarized difficulties leads us to postulate the necessity of a 
systemic (Bunge, 2000; Bunge, 2004) approach which, from an operational point of view, could help instructors 
and students to achieve a better performance in the process of teaching and learning physics. Now, learning to 
approach problems in a systemic way starts from teaching and learning the interrelationships among conceptual 
knowledge, mathematical skills and logical reasoning (Heron and Meltzer, 2005). The problem arisen after the 
opening of the Millennium Bridge can further illustrate the needs for teaching and learning based on a systemic 
approach which recognizes the interrelatedness of every aspect of a physical process (physics, mathematics, and 
engineering design) (Strogatz et al., 2005). 

Earlier work on the importance and necessity of a problem-solving strategy can be found in the work of the great 
mathematician George Pólya (Pólya, 1973; Pólya, 1963a; Schoenfeld, 1985; Schoenfeld, 1987; Schoenfeld, 1992; 
Lederman, 2009), who made emphasis on the relevance of the systematicity of a problem-solving strategy for 
productive thinking, discovery and invention.  

Inspired on Pólya’s ideas, we are presenting a six steps problem-solving strategy that could be applied to tackle 
the afore mentioned problems in the teaching and learning of physics. Based on the experience of applying the 
strategy in our own teaching activities, we have found that it is extremely useful in teaching both conceptual and 
quantitative reasoning explicitly. Moreover, it is just a matter of time to combine this problem-solving approach 
with some fruitful ideas that have been advanced about how to properly address the design of instruction, so the 
involved learning cognitive mechanism of the students are triggered, leading to a more effective teaching 
outcomes (Hestenes, 2003; Dunn and Barbanel, 2000; Reif, 1981; Reif and Scott, 1999; Redish and Steinberg, 
1999; Scherr, 2007). 
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3.1 A six steps problem-solving technique 
1. Understand the problem: some considerations to develop at this step involves drawing a figure and asking 
questions like: What is the unknown? What is the condition? Is it possible to satisfy the condition? Is the 
condition sufficient to determine the unknown? Or is it insufficient? Or redundant? Or contradictory? That is, in 
this stage students needs to actually be sure to what the problem is. In addition to making drawings to get a grasp 
of the problem, students might need to reformulate the problem in their own words, making sure that they are 
obtaining all the giving information for solving the problem. This is a crucial step in the sense that if one does not 
know where are we going, any route will take us there. 

2. Provide a qualitative description of the problem: in this stage students need to think and write down the 
laws, principles, or possible formulations that could help them to solve the problem. For instance students need to 
consider any possible frame work of analysis that could help them to represent or describe the problem in terms of 
the principles of physics (i.e. Newtons law, energy conservation, momentum conservation, theorem of parallel 
axis for computing inertia moment, non-inertial reference system, etc.) If necessary, the drawings of the previous 
step could be complemented by the corresponding problem free-body and/or vector diagram. 

3. Plan a solution: some considerations to have in mind in order to develop this step involves looking at the 
unknown and trying to think of a familiar problem having the same or a similar unknown. Some questions to be 
ask are like Have you seen this before? Or have you seen the same problem in a slightly different form?. Once the 
student have as many possibilities to approach the problem, he/she only needs to pick one strategy of solution and 
write down the corresponding mathematical formulation of the problem, avoiding as much as possible to plug 
numbers in the respective equations. Also, they need to think whether the information at hand would be enough to 
get a solution (i.e. if a set of algebraic equations is under or over determined, or if the number of provided 
boundary conditions is enough to solve a differential equation). 

4. Carrying out the plan: at this stage the student will try to find a solution to the mathematical formulation of 
the problem sketched according to the previous steps, and perhaps they will need to go back in order to find a 
easier mathematical formulations of the problem. This can be facilitated if the students have writing down 
alternatives of solution as they were suppose to do on item 2. 

5. Verify the internal consistency and coherence of the used equations: at the moment of finding a solution of 
the involved mathematical equations, students need to verify whether the equations are consistent with what they 
represent (i. e. are the equations dimensionally correct? Do they represent a volume or a surface?). Though this 
seems to be an unnecessary step, experience shows that students too often do not verify the internal consistency 
and coherence of the equations they solve. And this mistake is also found to be performed by textbook writers, as 
discussed in a recent editorial (Bohren, 2009). After verifying that no inconsistencies are found in the 
mathematical solution of the problem, students could then plug numbers in the obtained results to find, whether 
required or not, a numerical solution which in turn could be used in the next step to further evaluate the obtained 
result. In the next section, by means of a illustrative example we will show how the right answer of the illustrative  
posed problem could be obtained, even though the internal consistency of a used equation is not right. Let’s 
mention that, in order to further show students the necessity of continuously verifying the consistency of the used 
equations, one could resort to the naive problem involving the wrong proof that 1 = 2: starting with x(x−x) = 
(x−x)(x+x),  after (wrongly) dividing by (x-x) in both sides of this identity leads to x = 2x, which  in turns leads to  
1 = 2. 

6. Check and evaluate the obtained solution: once a solution has been obtained, its plausibility needs to be 
evaluated. Some questions could be asked in this regards: can the results be derived differently? Can the result or 
the method be applied to solve or fully understand other problems? Can the solution be used to write down the 
solution of a less general problem? Can the solution be used to further understand the qualitative behavior of the 
problem? Is it possible to have a division by zero by changing a given parameter? Does it makes sense?, and so 
forth. 

In the next section will examine further these steps by applying them to solve an illustrative example. 
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4. ILLUSTRATIVE EXAMPLE 
In the following example we will present an approach on how to introduce students in the use of our proposed six 
steps problem-solving strategy. It is pertinent to point out that, by proper training, students could absorb the steps 
of our problem-solving strategy in such a way that they could perform the corresponding operations mentally, 
naturally, and vigorously. 

Problem: About its central axis, find the moment of inertia of a thin hollow right circular cone with radius R, 
lateral length L, and mass M uniformly distributed on its surface with density σ , as shown in Figure 1. 

 

Figure 1: A hollow right circular cone with radius R, lateral length L, and uniform mass M. The cone’s 

high is H = 22 RL − . The figure also shows, at the lateral distance l, measured from the cone’s apex at 
the origin of the coordinate system, an infinitesimal ring of lateral length dl and radius r. Two useful 
geometrical relations among some of the dimensions shown in the figure are r = (R/L) l and r = (R/H) z. 

Solution: 

1. Understand the problem: “It is foolish to answer a question that you do not understand. ··· But he/she  should 
not only understand it, he should also desire its solution.”(Pólya, 1973) Following Pólya’s comment, before 
attempting to solve this problem, students need to have been exposed to a basic theory on computing moment of 
inertia (I). Particularly, students need to be familiar with the computation of I for a thin circular ring about its 
main symmetric axis. To further understands the geometry of the present problem, students could, for example, be 
talked about the shape of an empty ice cream cone. After  some discussion, a drawing better than the one shown 
in Figure 1 could be presented on the board. Let’s mention that additional ways of presenting each step in 
meaningful ways can be found in (Pólya, 1973; Heller et al., 1992). 

2. Provide a qualitative description of the problem: In this step one could further motivate the discussion by 
associating the computation of I with rotational motion quantities (i.e. kinetic energy, angular momentum, torque, 
etc.). One can even motivate the qualitative discussion by considering the hollow cone as a first crude 
approximation of a symmetric top or of a cone concrete mixer. The drawing of Figure 1 could even be made more 
explicative. 

3. Plan a solution: “We have a plan when we know, or know at least in outline, which calculations, 
computations, or constructions we have to perform in order to obtain the unknown. ··· We know, of course, that it 
is hard to have a good idea if we have little knowledge of the subject, and impossible to have it if we have no 
knowledge. ··· Mere remembering is not enough for a good idea, but we can not have any good idea without 
recollecting some pertinent facts.”(Pólya, 1973) Accordingly, at this stage instructors could point out the 
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superposition principle to solve the problem by slicing the hollow cone in a set of small, infinitesimal, rings 
distributed along the symmetrical axis of the cone. Thus, each infinitesimal ring will have in common the same 
rotational axis about which the moment of inertia of them is already known dSrdmrdI σ22 == , where r, dm, 
and dS  respectively represent the radius of each infinitesimal ring, the mass of each infinitesimal ring, and the 
surface of each infinitesimal ring. 

4. Carrying out the plan: To carried out the plan, it won’t be a surprise to choose the wrong dS. In fact, it is not 
difficult, at first sight, having students choosing wrongly (see Figure 1): dS = 2π r dz = 2π (R/H) z dz, which lets 
to S = π RH, as the hollow cone surface (this result is of course wrong). Using this surface element, the moment 
of inertia (or rotational inertia) for the small ring about its axis takes the form drrRHdSrdI 32 )/(2πσσ ==  
(see Figure 1), which lets to I= 2/))(2/1()4/)(/(2 224 MRRSRRH == σπσ , as the required moment of 
inertia of the hollow cone (which is the right answer). It is not difficult to get students performing this sort of 
wrong computations, and they become uneasy when trying to convince them that in spite of having found a right 
result, it is specious because it was obtained via a wrong choice for dS. Eventually students might agree on the 
incorrectness of their procedure if asked to compute explicitly the cone’s mass. 

5. Verify the internal consistency and coherence of the used equations: “Check each step. Can you see clearly 
that the step is correct? Can you prove that it is correct? ··· Many mistakes can be avoided if, carrying out his/her 
plan, the student check each step.”(Pólya, 1973) Steeping on our teaching experience, it is too easy for students to 
perform without hesitation the just aforementioned wrong computations, as presented in the previous step. And it 
is not easy to get students to realize their mistake. For God’s sake, they have computed the right answer!!!: that is, 
for a hollow thin cone, rotating about its symmetric axis, 2/2MRI = !!!. How in the world a mistaken procedure 
could have lead to a right answer !!! In this situation, to make aware students of their mistake, the easy way is the 
experiment. Instructors could unfold several hollow cones to actually show the students that the respective surface 
is RLS π= , instead of the wrongly obtained RHS π= . Accordingly, we hope to have provided enough 
evidence for the need to, explicitly and repeatedly, mention to the students the need to check each computational 
step, including checking for dimensionality correctness. In this case, the right approach is to 
consider dlLRlrdldS )/(22 ππ == , which yield RLS π= , the right answer for S (the cone’s lateral surface). 
This choice for dS lets to drrRLdSrdI 32 )/(2πσσ ==  (see Figure 1), which yields 

2/))()(2/1()4/)(/(2 224 MRRSRRLI === σπσ , the right answer for a hollow cone’s rotational inertia I 
about its symmetrical axis. 

Considering that it is not hard to find stories on reported wrong results due to wrong or incomplete computations 
(Strogatz et al., 2005; Veysey and Goldenfeld, 2007), this problem could also be used as an example of how 
computations of a physical quantity (the surface of a cone shell) can be used to judge a mathematical result (the 
wrong value for S) that is used in subsequent computations yielding a right answer. 

6. Check and evaluate the obtained solution: “Some of the best effects may be lost if the student fails to 
reexamine and to reconsider the completed solution.”(Pólya, 1973) After gaining confidence on the obtained 
solution of the problem, it is necessary to spend sometime in evaluating its plausibility. Examining the solution of 
our problem one could ask: it is not striking that the rotational inertia for a hollow cone about its symmetric axis is 
the same as for a solid disk having the same uniformly distributed mass M and radius equal to the cone’s base? 
Does not it a counter example for the statement that rotational inertia only depends on how the mass is distributed 
around the axis of rotation? Furthermore, if for some reason the wrong choice for the dS was not caught in the 
previous step, it could be detected if analyzing the case of having a non constant σ. A further interpretation of the 
result can be found at (Bolam and Wilkinson, 1961). 
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5. DISCUSSIONS 
 

This article presents a six step problem-solving strategy, aiming to approach three major problems in the learning 
and teaching of introductory engineering physics courses: 1) the demand of the physics instructors for effective 
teaching strategies that could help in the teaching of intuitive conceptual and quantitative reasoning, and how to 
teach both aspects holistically 2) the students’ need for suitable methodology that could help students to fill the 
textbooks’ gap on enhancing their mathematical reasoning abilities, which are essential for reinforcing students’ 
knowledge of conceptual physics, and 3) a deficiency in the teaching of physics leading to students not being 
taught a coherent physics problem-solving strategy that enables them to engage in both mathematical and 
conceptual reasoning. 

At this point one could recall a particular point of view that the great mathematician Pólya stressed very much in 
his writings about the art of teaching and learning, which, in some sense, can be considered as an “axiomatic 
thought” about the art of teaching an learning. He was emphatic on the fact that “for efficient learning, the 
learner should be interested in the material to be learnt and find pleasure in the activity of learning.” In other 
words, inspiration to learn is without doubt a necessary condition in order to have an efficient and effective 
teaching and learning environment. 

This, of course, is by no means a new discovery, and, paraphrasing Schoenfeld (Schoenfeld, 1977), some ideas to 
circumventing few of the barriers between the dedicated instructor and his/her students’ attitudes in “learning” the 
subject that is being taught has been set forward in (Schoenfeld, 1977; Ehrlich, 2007; Duda and Garrett, 2008). 
Nevertheless, one should keep in mind that “we know from painful experience that a perfectly unambiguous and 
correct exposition can be far from satisfactory and may appear uninspiring, tiresome or disappointing, even if the 
subject-matter presented is interesting in itself. The most conspicuous blemish of an otherwise acceptable 
presentation is the ’deus ex machina’.”(Pólya, 1963b) 

 

6. OVERALL CONCLUSIONS 

The large number of published “Comments on …” and “Reply to …” articles in which much of the discussion is 
about the incorrectness of the physical interpretation of a concept or an idea, are indicative that the qualitatively 
understanding of the concepts of physics is a very elusive task, where even experienced researchers can fail to 
grasp. In spite of this evidence, much of the recent publications in Physics Education Research favor conceptual 
learning over quantitative reasoning. Consequently, both instructors and students find it very difficult to find 
suitable teaching and learning literature emphasizing both aspects. As a result, student’s of general physics 
courses have strong difficulties in answering correctly questions involving uncomplicated computations, like 
comparing the kinetic energy of simple rotating objects.  Consequently, in this article we presented a problem-
solving strategy that can be used to simultaneously incorporates the teaching and learning of conceptual physics 
and mathematical reasoning. There is evidence that using problem-solving strategies in combination with active 
learning methodologies could improve significantly the performance of students in this regards (Heller et al., 
1992), a fact that we have experienced in the teaching of physics to students majoring in Biology. 
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