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ABSTRACT 

BioNetXplorer is a standalone application that allows the integration of more than twenty topological and 

biological properties of the nodes of a biological network, and that displays them in a intuitive, easy to use 

interface. Along this functionality the application can also perform graphical shortest paths analysis and shortest 

paths scoring of genes, due to the intensive computational requirement of the later it has the potential to connect 

to a Hadoop cluster for faster computation. 

 

Keywords: Biological Network, Topological Analysis 

RESUMEN 

BioNetXplorer es una aplicación de escritorio que permite la integración de más de veinte propiedades 

topológicas y biológicas de los nodos de una red biológica, mostrando esta información en un interfaz intuitivo y 

fácil de usar. Además de esta funcionalidad la aplicación también realiza análisis de caminos más cortos de 

manera gráfica, y la evaluación de puntuación de genes por medio de caminos más cortos. Debido a las 

necesidades intensivas de computación de esta última funcionalidad el software tiene el potencial de conectarse a 

un clúster de Hadoop para computación más rápida. 

Palabras claves: Red Biológica, Análisis Topológico 

1. INTRODUCTION 

With the increasing amount of available biological network information, network analysis is becoming more 

popular among researchers in the bioinformatics field, therefore there is an increasing need for diverse network 

analysis tools that facilitate the study of biological networks, analysis tools that integrate both topological and 

biological data, and that can display the most information in an integrated graphical interface. Another “must-

have” capability is the ability to export the annotated networks in formats that can be processed by other available 

tools like Cytoscape (Shannon, et al., 2003) for graphical analysis or RapidMiner (Rapidminer, 2014) for data 

mining. Several tools for this purpose have been developed over the years, like Centiscape (Scardoni, Petterlini, & 

Laudanna, 2009) and NetworkAnalyzer (Assenov, Ramirez, Schelhorn, Lengauer, & Albrecht, 2008) that 

compute at most seventeen network topological properties, or like VisANT (Hu, Mellor, Wu, Yamada, Holloway, 

& DeLisi, 2005) that is used for biological analysis based on Gene Ontology (Gene Ontology Consortium, 2010); 

however, they do not integrate available topological properties along with biological information like Gene 

Ontology annotations in a single interface, or only compute some subset of topological properties. For this 

reasons we have devoloped BioNetXplorer, a tool with a user friendly and intuitive interface, with a rich 

documentation that will allow users to easily start analyzing their own networks. Our main contribution is the 

capacity to compute several network and node topological properties, retrieve biological related data from 

external sources and display all of these information in a single interface, furthermore the application can do 

graphical shortest path analysis and has a gene prioritization utility that is able to connect to an external cluster to 

improve the time performance of the computation. 
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2. BACKGROUND 
A graph is a data structure that represents a set of relationships between elements or objects. Formally a graph G 

is a pair defined by G = (V, E), where V is a set of elements that represent the nodes or vertices of the graph, the 

vertices may or may not hold information, for the purpose of this paper the information that is held in the vertices 

is dependent on the especic problem that is being discussed, some applications hold natural numbers on them, but 

some others hold the name of an entity like a gene or protein. E is the set of edges, where each edge represent a 

relation between two vertices, an edge is defined by E = {(u, v)| u,v  V}, this edge may hold additional 

information as weight. The edges may represent direction, where (u, v) ≠ (v, u), in which case the graph is called 

directed graph, and when direction is not important, the graph is called undirected graph. It is denoted that n is the 

number of vertices in the graph, formally n = |V|, and e is the number of edges, e = |E|. 

 

Following the properties used in BioNetXplorer are presented. First vertex properties are introduced, as some of 

these definitions will be later used in the network properties discussion. 

 

2.1 VERTEX INVARIANTS 
 

Degree 

This measure could be expanded to In Degree and Out Degree for directed graphs. This property measures how 

many connections a vertex has, another way of saying how many edges converge to this vertex or how many 

vertices are neighbors of this vertex. This property will be referred as InDegree(v) and OutDegree(v). For 

undirected networks the following identities are used: OutDegree(v) = Degree(v) and InDegree(v) = -1. 

 

Neighbor Connectivity Index 

This measure was introduced by Tian et al. (Tian & Patel, 2008) and its magnitude tells how the neighbors of a 

vertex are connected to each other. Basically this invariant counts how many edges are between the neighbors of a 

given vertex. For illustration look at Figure 1. 

 

 

Figure 1: Network Connectivity Index 

 

 

Notice the dashed edges; they are the edges that connect the immediate neighbors of the darker node. In this 

particular case the Neighborhood Connectivity Index value of the darker node is 5 as the number of the dashed 

edges. BioNetXplorer has two very similar invariants. One counts all edges including the self edges, in the case 

there is an edge going to the same vertex, and this invariant is called nbc1(v). Another one does not count the self 

edges of the vertices, this one is called nbc2(v). This invariant only counts Out Degree in the case of directed 

networks. 

 

Singles Count 

The singles count invariant shows how many of the neighbor vertices of a vertex have degree = 1. This property 

will be referred as SingleCount(v). 
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Single 

It is a boolean value that stores takes the value of true when the vertex has only one incoming connection, making 

this vertex a "single vertex". This property will be referred as isSingle(v). 

 

Closeness Centrality 

This vertex invariant represents how close a vertex is to all the others (Freeman, 1979). It is defined by: 

𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑣)
1

∑ 𝑑𝐺(𝑣, 𝑡)𝑡∈(𝑉−𝑣)

 

This is one of the centrality measures, these measures try to represent how central a vertex is in the whole 

network. The closer this number is to 1 the more central it is, and the easier is for a vertex to reach the others 

much faster. In Social Networks a vertex representing a person with a high value of closeness would be 

interpreted as a person that can easily reach most people in the network, either directly or with very few hops 

through other persons. Notice one important aspect about this invariant, and is that it looks correlated to degree, 

but there is not always a direct relationship between closeness centrality and degree.  

 

 

Figure 2: Closeness Centrality 

 

 

In Figure 2 is clear that the β nodes are the ones with highest degree, but their closeness centrality value is 0.0321, 

and the α node, although its degree is only two, has the highest closeness centrality value, 0.0333. This happens 

because the α node is more "central" than the β nodes.  

 

Self Edge  

This property will be called hasSelfEdge(v). This is a simple boolean invariant that is true when the node has an 

edge that goes to itself: (u,u)  E.  

 

Eccentricity 

This property of the node stores an integer representing the longest shortest path from this node. It measures how 

far this node is from the center of the network, so for values close to the diameter of the network would be 

interpreted that that vertex is on the "edge" of the network, and the lower this value the more central the node is. 

𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝑣) = max⁡{𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ(𝑣𝑖)} 
 

Articulation Point 

This is another simple boolean property that is true if the node is an articulation point in the graph. An articulation 

point, also referred as Cut Vertex, is a vertex v such that when it is eliminated from the graph along with all its 

incident edges V' = V - {v} and E' = E - {(v,u) | u  V} a new graph G' = (V',E') is created, and this new graph is 

divided in two or more connected components (Aho, Hopcroft, & Ullman, 1983). If all articulation points of a 

graph are found, then we would have found all the maximal biconnected components of the graph, which would 

form a tree whose elements are all the articulation points and the biconnected components. This property will be 

referred as Articulation_Point(v). 
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Star Center 

This is a boolean property that becomes true when the vertex is central to "many" single vertices. Many is defined 

by more than 50% of the adjacent vertices are single vertices. So, this property is true when the following 

relationship holds:  

𝑖𝑠𝑆𝑡𝑎𝑟𝐶𝑒𝑛𝑡𝑒𝑟(𝑣) =
𝑠𝑖𝑛𝑔𝑙𝑒_𝑐𝑜𝑢𝑛𝑡(𝑣)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)
> 0.5 

 

Central 

This is a boolean property that becomes true for all v  V that hold the following relationship:  

𝑖𝑠𝐶𝑒𝑛𝑡𝑟𝑎𝑙(𝑣) = 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝑣) = 𝑟𝑎𝑑𝑖𝑢𝑠(𝐺) 
 

Peripheral 

This is a boolean property that becomes true for all v \in V that hold the following relationship:  

𝑖𝑠𝐶𝑒𝑛𝑡𝑟𝑎𝑙(𝑣) = 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝑣) = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐺) 
 

Clustering Coefficient 

The clustering coefficient of a node describe how close the node and its neighbors are to become a full graph: a 

clique. If the node and its neighbors form a clique, then the clustering coefficient takes on the value 1. This 

property is defined by the following formula: 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝑣) =
2 ∗ 𝑒𝑐

𝑛𝑐(𝑛𝑐 − 1)
 

Where ec is the number of edges in the subgraph made only of node v and its neighbors, and nc is the number of 

nodes of that same subgraph. 

 

Entropy 

This a vertex invariant this is defined by the following formula (Simonyi, 1995) (Shetty & Adibi, 2005): 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑣) = 𝑝(𝑑𝑒𝑔𝑟𝑒𝑒(𝑣))ln⁡(𝑝(𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)) 
 

Where p(k) is the ratio of vertices that have degree k. This value tries to quantify the expected value of the 

information contained in each node, this is based on the degree of the nodes. In the case of a directed network two 

values are computed, one for In Degree and another for Out Degree. 

 

Degree Centrality 

The degree centrality is defined by: 

𝑑𝑒𝑔𝑟𝑒𝑒_𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑣) =
𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)

𝑛 − 1
 

Like entropy, this invariant is computed for both In and Out Degree for directed networks. Basically represents 

how much connected a vertex is to its neighbors. It is the simplest of the centrality measures, and it measures the  

the number of incident links to a node in relation to the number of nodes in the whole network. 

 

JUNG Vertex Invariants 

JUNG stands for Java Universal Network / Graph Framework (O'Madadhain, Fisher, White, & Boey, 2003), it is 

an open source software library for Java that provides tools for modeling, analysis and visualization of data that 

can be represented as a network or graph. 

 

JUNG integrates very well with the Java programming environment, in addition it has extensive examples 

provided with the library. These two reasons made the integration of JUNG into BioNetXplorer. Along the way 

there were other two advantages that were discovered, one is that it has a very powerful customization 

mechanism, that allows many graphical visualization operations to be specified by the user of this Application 

Programming Interface (API). The other advantage is that the visualization of biological networks was better than 

the usual Cytoscape visualization tool (Shannon, et al., 2003). 
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The properties that we use from the JUNG library are described next, the descriptions are taken from the JUNG 

API (http://jung.sourceforge.net/doc/api/index.html) description and complemented with the indicated references. 

 

 Page Rank. This is an eigenvector-based algorithm. The score for a given vertex can be seen as the 

fraction of time spent `visiting' that vertex in a random walk. It modifies the usual random walk by adding 

to the model a probability. This score was originally proposed by Larry Page and is used by the Google 

search engine. This algorithm tries to score all the vertices, or web pages as seen by Google, so that 

higher scoring vertices are more important or relevant. 

 Distance Centrality. Assigns a value to the vertices based on the distances to each other vertex in the 

graph. If the value is normalized by averaging then this property is equivalent to closeness centrality. 

 Barycenter. It is much like Distance Centrality but this is not an averaged value. 

 Closeness Centrality. Is a vertex score based on the mean distance to each other vertex. 

 HITS. Assigns hub and authority scores to each vertex depending to the network topology. The idea is 

that a vertex becomes a hub as long as it has links to authorative vertices, and is an authority vertex if it 

links to hub vertices.  

 Betweenness Centrality. This measure scores vertex in such a way that vertices that appear in more 

shortest paths will have higher betweenness centrality score. It is defined by the following equation: 

𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠_𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡∈𝑉

 

Where 𝜎𝑠𝑡 is the number of shortest paths that go from s to t and  𝜎𝑠𝑡(𝑣) is the number of shortest paths 

that go from s to t but pass through v. The implementation in JUNG makes reference to (Brandes, 2001), 

in there it claims that the algorithm is optimized, but experiments proved that this property computation is 

very time consuming. 

 Eigenvector Centrality. This property measures the fraction of time that a random walker will spend at 

the specific vertex, over an infinite time horizon. PageRank is a variant of this score. JUNG API assumes 

that the graph is strongly connected. 

 Random Walk Betweenness Centrality. Instead of using the shortest paths to compute the Betweenness 

Centrality this property uses the expected number of times a node is traversed by a random walk averaged 

over all pairs of nodes. 

2.2 NETWORK INVARIANTS 
There are many properties that can be computed to describe certain characteristics about a graph. The most trivial 

ones are the number of nodes of a network, or the degree of a node. Nevertheless there are other properties that 

help researchers to understand the nature of the network. Based on the specification of simply the number of 

nodes and degrees of nodes, one can easily have a lot of networks that fall into the same category, then more 

properties would help classify or identify networks and vertices more accurately. Therefor BioNetXplorer 

computes several properties of a graph, which are called network and vertex invariants (as discussed in the 

previous section), to help the user conduct a more precise identification of the intrinsic properties of the network. 

The network invariants we studied are:  

 

Nodes 

The most simple invariant of all, is the number of nodes in the network. 

 

Edges 

It is the number of edges in the network, this is computed from the degree of each node. 

  

Directed 

It is a boolean value that shows if the network is directed or not. 

 

Strongly Connected 

http://jung.sourceforge.net/doc/api/index.html
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It is a boolean value that indicates whether the network is strongly connected or not, this is if given any vertex of 

the network we can reach all the other vertices. 

 

Radius 

The network radius is defined by: 

𝑟𝑎𝑑𝑖𝑢𝑠(𝐺) = min
𝑣𝑖∈𝑉

{𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝑣𝑖)}⁡ 

 

Diameter 

The diameter is defined by: 

𝑟𝑎𝑑𝑖𝑢𝑠(𝐺) = min
𝑣𝑖∈𝑉

{𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝑣𝑖)} 

This represent the longest shortest path in the whole network, that is why it has the sense of diameter, as it is the 

longest shortest distance from any two points in the graph. 

 

 

3. SYSTEM OVERVIEW 

 

Figure 3: System Overview 

BioNetXplorer has three main functionalities: Single Network Exploration, Shortest Paths Analysis and Shortest 

Paths Scoring, see Figure 3. The Single Network Exploration, serves to survey structural and topological 

properties of the network and individual nodes, it also has the capability of retrieving biological data from the 

nodes by connecting to a Gene Ontology database and to the National Center of Biotechnology Information 

(NCBI) Gene Entrez Web Service (Maglott, Ostell, Pruitt, & Tatusova, 2005). When the user opens a network he 

can select the topological properties that will be computed, the properties that may be selected are: Neighbor 

Connectivity (NBC) (Tian & Patel, 2008), single count, closeness centrality, network diameter (and radius), 

articulation points, clustering coefficient, entropy and degree centrality; besides these properties that are 

computed by our own network library, we have also incorporated the computation of other properties by the Java 

Universal Network/Graph (JUNG) (O'Madadhain, Fisher, & Nelson, 2010)  library, they are: page rank, closeness 

centrality, eigencentrality, HITS, barycenter, distance centrality, betweenness centrality and random walk 

betweenness. Once a network is loaded, and the selected properties are calculated the interface allows the user to 

be able to see all of the node properties in the same window, given that the user has a computer screen with 
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enough resolution; for lower resolution screens we made a “tabbed” version, where all structural properties are 

grouped together in one tab, and all biological properties are grouped in another tab.  Additionally, this 

exploration interface allows the user to load graphs in edge list file formats where the networks can be directed or 

undirected, have weights or not; save the network with computed properties, retrieve and store the network in a 

MySQL database (Local BioDB), export all vertex properties in comma separated values (CSV) format, export in 

standard XML format with the specification XGMML (Punin & Krishnamoorthy, 2010) and export in GML 

(Himsolt, 1996) format. The exportation of the vertex properties in CSV format permits the use of this 

information as feature vectors and process them in external tools like RapidMiner or Weka, to apply machine 

learning or data mining algorithms in these data. XGMML format was selected because is standard XML 

consequently can hold all the properties that are shown in our application. What is more,  GML and XGMML are 

both formats that are importable from Cytoscape, thus permitting the user to do further analysis in Cytoscape. 

This interface also allows the user to see a list of the vertices sorted by for different properties: Degree, Closeness 

Centrality, Articulation Point, Importance. The importance parameter is defined as a node that has a high degree 

value, and also has high closeness centrality value; so this vertex besides having a lot of local connections also is 

central to the network. The important vertices are sorted based on whether they are articulation points of the 

network or not and on their closeness centrality value. 

The Shortest Paths Analysis is a utility that allows the user to create subnetworks based on the nodes that are on 

the shortest path between several user given pairs of vertices, the interface permits the graphical display of the 

created subnetwork, and to export this subnetwork to XGMML for further analysis in external tools. 

The Shortest Paths Scoring, is a functionality that is used to do gene prioritization, where the user can load a 

weighted network and a training set of seed genes that will serve as sample for prioritizing the rest of the genes on 

the network using a shortest paths gene scoring method. This utility requires the computation of all the shortest 

paths on the network which is a time consuming part of the scoring, therefore we incorporated to the application 

an interface to compute the score in a Hadoop1 cluster, dramatically improving the time performance of this 

computation. 

Figure 4 shows how BioNetXplorer interacts with external services, and with local databases. In adiction, shows 

the third party libraries that it uses: 

- jsch, for SSH protocol handling, helps with the communication with the hadoop cluster. 

- EUtilsLib, for the web services that connect to the NCBI Gene Entrez 

- JUNG, to compute additional topological properties 

- mysql-connector, to connect to local databases: MyGO a replica of the Gene Ontology Full Database, and 

BioDB a database to store the networks with the computed properties for later retrieval and analysis 

- GO4J is a planned add on to access the Gene Ontology database directly 

- NetworkLib, the in house developed library and framework where core computations are handled 

The reason to compute all vertex invariants is to be able to explore the network from different perspectives, and 

also these properties help identify structurally important nodes. This information combine with the biological data 

helps biological network researchers to visualize interesting patterns thus localizing relevant genes in genetic 

networks. Figure 5 shows how all data is displayed in a single interface for the convenience of the researcher. 

BioNetXplorer does not have strong visualization tools, but does export in formats to use the powerful 

visualization tool Cytoscape. 

 

                                                      
1 http://hadoop.apache.org/  

http://hadoop.apache.org/
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Figure 4: System Overview 

 

 

Figure 5: Network Exploration Main Interface 

 

4. REAL WORLD APPLICATIONS 

BioNetXplorer capabilities have been applied for diverse topological and biological analysis in past research, for 

instance (Yeh, Liu, Yeh, & Soo, 2010) mined the nodes structural properties in order to discover important or 

relevant nodes within subnetworks in their prostate cancer study, (Yeh, 2010) also employed this application to 

compute all available structural node properties with the purpose of enriching with data the networks in his study, 
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moreover he also used the shortest path subnetwork display in his pathways analysis to extract significant cancer 

related subnetworks. Another application of this tool is in the Disease Gene Prioritization study for prostate 

cancer project, where we have applied with results the Shortest Path Scoring functionality of this tool. The results 

where coherent with previously found cancer related genes, and provided some new genes for further exploration 

according to our published work (Arias, Yeh, & Soo, Disease Gene Prioritization, 2011) (Arias, Yeh, & Soo, 

2012). An overview of this application can be found in: http://www.youtube.com/user/BioNetExplorer.  

5. CONCLUSIONS 

BioNetXplorer has proven to be a useful tool for biological networks analysis in related ongoing and past research 

projects, having the advantange that can export annotated networks in XGMML format, thus allowing these 

networks to be further analized using Cytoscape or any other external tools. Since BioNetXplorer is a standalone 

application it could be ran without having other applications in memory, allowing a more efficient use of 

computer resources. Furthermore, besides having the Single Network Exploration capability where the user can 

explore both structural and biological properties of the nodes of the network, the application provides Shortest 

Paths Analysis, and even a Gene Scoring functionality; the later possessing a built in faculty to connect to a 

Hadoop Cluster improving the time performance of the gene scoring computation. 
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