
Revisiting architectural tactics for security

 Eduardo B. Fernandez
1
, Hernan Astudillo

2
, and Gilberto Pedraza-García

3

1 Universidad Técnica Federico Santa María, Valparaíso, Chile edfernan@inf.utfsm.cl

(On leave from Florida Atlantic University, Boca Raton, FL, USA)
2Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso, Chile

hernan@inf.utfsm.cl
3Universidad de Los Andes, Bogotá, Colombia g.pedraza56@uniandes.edu.co

Abstract. Architectural tactics are design decisions intended to improve some

system quality factor. Since their initial formulation, they have been formalized,

compared with patterns and associated to styles. However, the initial set of tac-

tics for security has only been refined once. We have examined the tactics set

and classification from the viewpoint of security research, and concluded that

some tactics would be better described as principles or policies, some are not

needed, and others do not cover the functions needed to secure systems, which

makes them not very useful for designers. We propose here a refined set and

classification of architectural tactics for security, which we consider more ap-

propriate than the original and the previously refined sets. We also suggest a

possible realization for this modified set.

Keywords: Tactics; secure architectures; security patterns; secure software de-

velopment

1 Introduction

Secure systems are notoriously hard to build; like most global system quality criteria,

a piecemeal approach based on securing system elements is simply inappropriate.

Since design decisions about incorporating security mechanisms have a global effect,

no local optimizations are possible. From a security research standpoint, in the lack of

quantitative measures, a secure system is one that can be shown to withstand a variety

of attacks, and although many approaches to build secure systems have been proposed

[22], they usually focus on some specific aspect, e.g. authorization, that can control

only a type of threats. Security-related decisions also interact with other quality at-

tributes, e.g. availability, and separate optimization is not possible.

The security research community has considered many ways to secure specific

parts of a system, to build secure systems, or to stop specific attacks, but few studies

exist about how to make secure a whole system [10, 15, 22]. On the other hand, soft-

ware architecture research has addressed security as yet another global quality proper-

ty, and to a large degree they have ignored the work on security research. The best

known software architecture approach to defining secure systems (and other global

quality attributes) is based on tactics.

Originally introduced in 2003 [2], architectural tactics are described as “measures”

or “decisions” taken to improve some quality factor, a definition later refined to “ar-

chitectural building blocks from which architectural patterns are created” [3]. Each

tactic corresponds to a design decision with respect to a quality factor. Architectural

tactics codify and record best practices for achieving some quality attribute. However,

no specific justification or validation of the selected set of security tactics was given.

No specific realization for those building blocks was given either.

Security differs from other quality factors like availability or scalability in its close

tie to the application semantics; e.g., only an account owner can withdraw money

from it, or a process cannot write outside its own virtual address space. Also, external

regulations may prescribe (directly or indirectly) specific information protection

needs, leaving no space for possible tradeoffs among different tactics.

Since their initial formulation, tactics have been formalized [1], compared with

patterns [18], associated to the Common Criteria [16] and associated to styles [13].

However, the initial set of tactics for security [2, 3] has only been refined once [19].

We believe that for an effective use in building secure systems the original set needs

revisiting but we do not agree with the results of the recent refinement of [19]. This

article presents a reasoned examination, pruning and reclassification of architectural

tactics for security, considering both the original set and the refined set of [19]. We

also consider a possible realization using security patterns; without a convenient reali-

zation, tactics do not provide enough guidance to architects.

 The remainder of the article is organized as follows. Section 2 discusses the use

of tactics for building secure architectures; Section 3 defines security principles and

policies, terms used for secure systems design; Section 4 examines the initial (and

still used) tactics tree and prunes it; Section 5 presents some new tactics; Section 6

proposes a realization for tactics using security patterns, while Section 7 discusses

related work. We end with some conclusions.

Fig. 1. Producing secure or reliable architectures from tactics.

functional

requirements

Pipes &
Filters

Broker

•
•
•

architecture

patterns

secure/

reliable

system

Security
tactics

Reliability
tactics

2 Building Secure Architectures

The literature records several approaches to use architectural tactics to build secure

systems. Harrison and Avgeriou [13] propose (see Figure 1) that the architecture be

first defined using architecture patterns to determine the structural aspects of the func-

tional requirements, and then apply tactics to introduce non-functional aspects such as

security and reliability. The articles with this proposal do not evaluate the actual level

of security or reliability thus obtained, or whether different realizations may yield

unnecessary security mechanisms.

Another attempt to make tactics more precise is by formalizing them [1]. Formaliz-

ing a vague concept is misleading since there can be many ways to do it and the for-

malizer needs to make many assumptions. Real systems need to be designed. Design

is not a mathematical or formal process but it requires experience and intuition from

the designer. Often, system designers are not experts on security and selecting precise

solutions is too hard for them. This means that premature formalization is not a good

idea either. We can formalize specific parts, which are separable from the rest of the

system; for the most part of the system, UML, which is a semi-formal approach, is a

good choice, and patterns which are “suggested solutions” appear to be the right di-

rection.

Patterns are encapsulated solutions to recurrent system problems and define a vo-

cabulary that concisely expresses requirements and solutions without getting prema-

turely into implementation details [4]. Security patterns are a type of architecture

pattern in that they usually describe global software architecture concepts, although

some consider security patterns to be a type of design pattern as well. Finally, some

security patterns are a type of analysis pattern in the sense that security constraints

should be defined at the highest possible (semantic) level of the system. While there is

no “official” template for security patterns, we use a variation of the POSA template

[4], which is composed of a thumbnail of the problem it solves (a threat to the sys-

tem), the context where the pattern is applicable, a brief description of how it solves

the problem (stops or mitigates the threat), the static structure of the solution (usually

UML class diagrams), the dynamic structure of the solution (usually UML sequence

diagrams or possibly activity or state diagrams), and guidelines for the implementa-

tion of this pattern. The contents of all the sections of the template are fundamental

for the correct use of the pattern. Patterns are not just solutions and are not plug-ins.

However, their solutions require some level of concreteness to be useful, vague con-

cepts are not much guidance to designers.

The effect of a pattern on security, performance, or any other factor depends on

how it is used; for example, applying authentication in many places in a system may

increase security but reduces performance. There are tradeoffs when improving any

quality factor. “Encrypt data” is a tactic that can be realized in several ways. Depend-

ing on the application, one is more convenient than the other. If the architect is not

experienced or knowledgeable about security, it is important to provide him with

more detailed guidance.

3 Security Principles and Policies

To be able to analyze tactics we need to discuss first some related concepts.

Principles are general statements that define ways to produce good designs. The clas-

sical paper of Saltzer and Schroeder [20], defined a set of security principles that

included among others: least privilege, separation of duty, and least common mecha-

nism. Later, more principles have been added, including “Defense in depth”, “Start

from semantic levels”, and others.

Policies are high-level guidelines defining how an institution conducts its activities

in its business, professional, economic, social, and legal environment [12]. The insti-

tution security policies include laws, rules, and practices that regulate how an institu-

tion uses, manages and protects resources. Regulations are legal or government poli-

cies that must be reflected in the implemented system.

More concretely, policies are management instructions indicating a predetermined

course of action or a way to handle a problem or situation. Every institution has a set

of policies, explicit or implicit, some of which are security policies. Security policies

are essential to build secure systems since they indicate what to protect and how much

effort to invest in this protection. In general, policies come from regulations, institu-

tion practices, or just good principles of design, i.e. prescribing some quality aspects

for the final product.

Policies are also used to indicate the way to avoid or mitigate threats; for example,

a mutual authentication policy avoids impostors from either side. Each system uses a

combination of policies according to its objectives and environment. As an example,

two of the most common security policies used in practice are:

• Open/closed systems — In a closed system, nothing is accessible unless explicit-

ly authorized, whereas in an open system everything is accessible unless explic-

itly denied. Institutions where information security is very important, such as

banks, use a closed policy (e.g. “only an account’s owner can access it”); insti-

tutions whose objective is disseminating information, such as libraries, use an

open policy (e.g. “all books are accessible except rare books”).

• Least privilege (need to know) — People or any active entity that needs to ac-

cess computational resources must be given authorization only for those re-

sources needed to perform their functions; e.g. “a secretary should not have ac-

cess to product plans”; it also applies to the institution (e.g. “it should not collect

more information than strictly necessary about its members”). This policy can

be considered a refinement of the closed system policy.

Policies are prescriptive, and can be thought of as directions for designers. Policies

can be structured into hierarchies, and more specific policies apply to the components

elements of a system. It is possible to express individual policies using UML class

diagrams and constraints.

In software architecture terms, policies are guidelines to apply tactics, which in

turn may be realized using for example security patterns [10], as shown in Figure 2.

Policies are applied as tactics which are implemented as patterns. The associations are

many-to-many. For example, Figure 3 indicates a policy which prescribes that “only

owners of accounts can access their accounts”, which is translated into two more spe-

cific policies, for Authentication and for Content-Dependent Authorization, which can

be realized by corresponding security patterns. In this example, the “content-

dependent authorization” policy can prescribe the use of the tactic “Authorize actors”,

which would be realized by a “Content-dependent Authorizer” security pattern. Broad

policies or tactics are usually obtained by combining several patterns; e.g. “Authorize

users” can be obtained with the patterns Authenticator, Authorizer, and Security Log-

ger/Auditor [10].

Fig. 2. From policies to security patterns.

Fig. 3. Hierarchies of policies.

4 Examining the Current Tactics

The original list of tactics is structured as a classification tree (see Figure 3); the tac-

tics are the tree leaves and most of them are at the same level. Although security pat-

Policy

Tactic

Security

Pattern

*

*

*

*

appliedAs

isRealizedBy

Account
1*

Content_dependent

authorization

Customer

Only owners of accounts

can access their accounts

Authentication

owns

terns can be classified [24] to cover all concerns, all the architectural levels of a sys-

tem, and other facets with a multidimensional matrix, tactics are simpler and we will

keep their tree structure. The branches of the current tree correspond to one of these

dimensions. And we have changed “Resist attacks” to “Stop or mitigate attacks”,

which is closer to what security designers do. We start by removing some tactics con-

sidered not useful and later we add some new ones. There is no formal way to prove

that this is an optimal or minimal set but based on our recent work we can have some

level of confidence that our set is appropriate [23]. We do not indicate how to perform

the operations to realize tactics now, security patterns, discussed later, indicate possi-

ble ways of realizing for example, “authenticate users”.

Good security design requires that security is enforced at the system level. Policies

about access must cover all applications using system resources. This means that, if

there are several applications sharing the same platform all of them should share in-

trusion detection, authentication, authorization enforcement, and logging; i.e., all the

available defenses. When a user of the application attempts to access some resource

the system functions enforce that this access satisfies the security constraints of the

whole system. Additional security constraints may be placed in applications but a

base set of security mechanisms controls the execution of all applications. Even if

there is only one application using the platform, this separation is important because

of the need to decouple those aspects which are not intrinsic to a specific application.

This was the same motivation that lead to aspect-oriented design [17]. All this means

that an application architect only needs to verify that the system implements some

tactics and does not need to include them in her design; only calls to those functions

are needed so they are enforced during the application execution. If the platform is

designed on its own,all these tactics would be implemented there.

We start with the branch of Figure 4 that describes tactics to resist attacks. “Identi-

fy actors’” is not a tactic to resist attacks, it is a useful mechanism in distributed sys-

tems, necessary to implement authentication, authorization, and logging. DoS is just

another type of attack, so “Detect service denial” is included in “Detect intrusion”. .

Some tactics are really principles. Principles are not specific enough to become

patterns or even tactics; there may be millions of solutions that satisfy a principle.

This means that tactics that correspond to principles are not useful; the designer has

no concrete guide about its realization. In the set of Figure 4 we can then eliminate as

tactics: “Limit exposure”, “Limit access”, and “Separate entities”. These three tactics

are good recommendations for designers, but there are millions of ways to implement

them. They are also not complete, why only these principles, “Need-to-know (least

privilege)” is another very important security principle, but it is not included, “use a

closed system” is another basic security principle not included. We also eliminated

“Detect message delay” which is a way to detect some attacks, but if we include it we

also need to include “detect abnormal behavior”, “match traffic to known attacks”,

and many others. In other words, its inclusion in the original set is arbitrary.

Fig. 4. Classification of security tactics [3].

As indicated, some proposed tactics are functions that apply to all applications, not

to specific ones. As such, they don’t need to be incorporated in each new application.

Some like “Verify message integrity” could be left if the application needs to have its

own way of applying cryptography. What security mechanism to put in an applica-

tion and which ones should be left to the system requires experience and depends on

the specific application, to imply that all applications need to incorporate these tactics

is misleading.

Similarly, the proposed tactics for reacting to attacks are always system functions,

which are implemented independently of any application, and don’t need to be added

to specific applications. “Maintain audit trail” is clearly a system function that can be

used to detect attacks and to recover from attacks. “Change default settings” is about

reconfiguration and boot up; these are operational system functions, and do not be-

long in an application or platform design. “Lock computer” may not always be possi-

ble, e.g., in a flight control system we cannot do that, we would need to reconfigure

the system to work in degraded mode.

Security Tactics

Detect

Attacks

Detect

Intrusion

Detect

Service

Denial

Verify

Message

Integrity

Detect

Message

Delay

Resist

Attacks

Identify

Actors

Authenticate

Actors

Authorize

Actors

Limit Access

Limit

Exposure

Encrypt Data

Separate

Entities

Change

Default

Settings

React to

Attacks

Revoke

Access

Lock

Computer

Inform

Actors

Recover from

Attacks

Maintain

Audit Trail

Restore

See

Availability

5 New or Modified Tactics

A tactic should not be too general or too specific. If too general the designer has no

guide which is the reason we eliminated principles; if too specific we have mecha-

nisms instead of tactics. Some tactics must be applied together in some order, e.g. we

have to apply Authentication, then Authorization, and then Access Control, in that

order. Establish secure channel is required before we can hide data.

We have deleted all the tactics considered unnecessary and we need to add new

tactics for the missing security aspects. We first add: “Verify the origin of messages”.

“Encrypt data” should be changed to “Hide data” with two varieties: “Use cryptog-

raphy” and “Use steganography”. To enforce the rules defined in “Authorize users”

we need a “Control access” tactic that would correspond to the security concept of

Reference\Monitor [12].

We have also added in Detect attacks the tactic “Verify storage integrity”, which

indicates the need to define measures to make sure that databases have not been modi-

fied. In this branch, we also split “Identify intrusions” into “by signature” and “by

behavior”, the two standard ways to apply intrusion detection. To react and recover

from attacks, the specific functions depend on institution policies, should be per-

formed by the system, and it does not make sense to define general functions.

“Establish secure channel” is needed to provide secure communications in a dis-

tributed system [23]. Once the secure channel is established we can hide (obfuscate)

the messages by using encryption or steganography. We add the tactic “Manage secu-

rity information”, which includes the management of keys for cryptography, the se-

cure storage of authorization rules, and other ways to handle security information.

Some security patterns for this purpose are given in [23]. Obviously, this is a funda-

mental tactic to have a secure system and it should be performed by the system.

‘Filter data” is necessary to avoid attacks based on abnormal inputs or coming

from untrusted sources.

We also changed the word “user” or “actor” for “subject”. According to standard

security terminology [12], subject is an active entity that can request resources and

includes humans and executing processes.

Figure 5 shows our final set of tactics. A very important aspect not mentioned in

software architecture books or papers is that all of these tactics are to be implemented

as shared system functions supporting all applications and should not be in general

implemented in specific applications. A well known principle of security asserts that

applications should not enforce their own security; this results in incomplete security

with inconsistent enforcement [12, 20].

Fig. 5. A new set of tactics.

6 Complementing Tactics with Security Patterns

A serious problem is the lack of guidance to complete the system implementation.

Because tactics do not prescribe any realization, several researchers have introduced

their own realizations. Kim [14] reifies tactics as reusable UML building blocks that

can be plugged in the architecture according to a list of non-functional requirements

(NFRs). A similar approach is used by Bagheri [1], with tactics like “ping echo”,

which is clearly a specific mechanism (realizable using patterns), to detect faults.

These approaches are in line with [17] and imply a plug-in or template way of apply-

ing realizations, contrary to the idea of design and to the concept of security patterns,

which are generic solutions that include several sections indicating the conditions to

apply the pattern as well as its consequences. Patterns are not plug-ins, but guidelines.

We are still in the requirements stage (or coming out of it) and it is too early to com-

mit to precise solutions, which leave out many alternative implementations. We pro-

pose a better approach in Section 6.

 After the previous discussion we can see that patterns and tactics are not parallel;

patterns are well-defined structured entities while tactics are recommendations with-

out any prescribed implementation. They are really different concepts, not alterna-

tives. As indicated, we can see tactics as a step leading to patterns but the selection of

the right pattern takes more knowledge, some of which is in the sections of the pattern

and some is in the classification of patterns. In fact, several methods exist to help

designers use them appropriately [22]. Other realizations for tactics exist, e.g., generic

security architectures and components [14], aspects [17], and S&D patterns [11].

Based on our experience, we believe that the most convenient realization of tactics is

by using security patterns but more experience with their use is needed to prove this

point.

Security tactics

Detect attacks Resist attacks React to attacks Recover from

Verify message integrity

Verify storage integrity

Identify intrusions

by signature by behavior

Authenticate subject

Authorize subject

Hide data

by encryption by steganography

Log & Audit

Verify origin of message

Alert actors

Apply institution

attacks

policies

Audit actions

policies
Apply institution

Manage security information

Filter data

Establish secure channel

A more serious problem is the lack of guidance to complete the system implemen-

tation. Because tactics do not prescribe any realization, several researchers have in-

troduced their own realizations. Kim [14] reifies tactics as reusable UML building

blocks that can be plugged in the architecture according to a list of non-functional

requirements (NFRs). A similar approach is used by Bagheri [1], with tactics like

“ping echo”, which is clearly a specific mechanism (realizable using patterns), to

detect faults. These approaches are in line with [17] and imply a plug-in or template

way of applying realizations, contrary to the idea of design and to the concept of secu-

rity patterns, which are generic solutions that include several sections indicating the

conditions to apply the pattern as well as its consequences. Patterns are not plug-ins,

but guidelines. We are still in the requirements stage (or coming out of it) and it is too

early to commit to precise solutions, which leave out many alternative implementa-

tions. We propose a better approach in Section 6.

Tactics have value for other purposes and we should consider this value as well.

Cañete uses tactics to annotate Jackson’s problem frames [5]. The annotations are

intended to provide arguments for the satisfaction of quality factors. [13] also uses

them for annotations about design decisions, which appears as a valuable use.

Another possibility is to use tactics to build a secure development approach simpler

and faster than methodologies based on threats. The methodology of [7] uses a pro-

cess based on the Rational Unified Process. This process is considered too complex

by many practitioners and a variety of agile methods have appeared. We want to see if

it is possible to combine tactics with some steps of this methodology to produce an

agile secure development methodology to build secure systems. The methodology

will also be enhanced using the new catalog of tactics to facilitate the selection of

patterns by inexperienced designers. We will evaluate the new methodology in a new

experiment where inexperienced designers and security experts will work together to

produce a more secure system in a shorter time. The idea is to use a minimum of se-

curity experts. Evaluation of the final system will be based on analyzing how the final

system can handle all the identified threats discovered in the use cases.

7 Related Work and Validation

As indicated earlier, several authors have tried to find relationships between security

tactics and security patterns, in particular [13, 14, 18, 19].

[14] proposes architectural tactics as reusable UML architectural building blocks

that offer generic solutions to specific problems related to quality attributes. The tac-

tics are represented as feature models to support decision making for non-functional

requirements through a set of explicit solutions. This approach is too rigid and does

not allow the designer the freedom provided by patterns. The choice of blocks is also

limited since no catalogs of these building blocks exist.

[18, 19] propose tactics as an intermediate architectural concept between high-level

decisions and patterns of architecture, so architectural patterns implement architectur-

al tactics. [18] defines a methodology to extract tactics from security patterns through

activities such as reclassification of architectural patterns, decomposition of patterns,

derivation of tactics hierarchies applying reasoning and intuition over patterns, and

realization or instantiation of existing tactics. They evaluated several sets of security

architectural patterns and applied a Delphi technique to produce a new security tactics

hierarchy. Opinion-based approaches such as Delphi cannot produce appropriate tac-

tics because they do not consider security knowledge. The Delphi method uses a set

of anonymous experts who give opinions on a subject; it is frequently used for busi-

ness forecasting but we doubt of its value to decide on technical aspects. We do not

consider this a “validation” of their approach as shown by their new set. Their results

include as tactics “Identify actors”, “Limit exposure”, and “Limit access”, which we

removed from the list of tactics as discussedvearlier. They also have redundancies,

tactic “Maintain confidentiality” is shown as a separate tactic, but confidentiality

requires using Authentication and Authorization, which are also shown as tactics.

They say that some "tactics have been misidentified as patterns" but the structure of

tactics and patterns are very different. A pattern is not just a solution or building

block but includes several sections on its use, none of which is present in tactics. We

prefer to stress their differences, leading to ways to use them together.

How should tactics be validated? Bass has never validated his initial set of tactics.

The knowledge and experience of one or two authors is in our opinion a better valida-

tion approach. E. Fernandez has written two books and numerous papers on security

while H. Astudillo has written significant papers on Software Architecture. We be-

lieve that our validation is better justified that the one in [19]. In this paper we used

our experience on security and software architecture and consulted several books and

papers on security requirements; in particular [6] was very useful. There is no formal

way to prove that this is an optimal or minimal set but based on our recent work we

can have some level of confidence that our set is appropriate [23]. Its ultimate valida-

tion can only come from practice. Until now we have not seen any report of practical

systems being built using tactics. A possible validation could be to ue a list such as

Top Ten or OWASP and check that this set of tactics could control them.

8 Conclusions

There is a significant confusion in terminology, conceptual definitions, and use of

patterns and tactics. This has lead to methodologies that are difficult to combine with

others and with unclear security results. We have tried here to make these concepts

clearer by questioning the original set of tactics according to established security

knowledge and showing the need for appropriate ways to realize tactics. Precise defi-

nition of these concepts should lead to better architectural knowledge and better

methodologies to build secure systems. Our tactics are derived from our architectural

and security knowledge; we do not claim they are complete but they are useful, espe-

cially when complemented with a good catalog of security patterns.

We believe that current methodologies to improve architectural quality using tac-

tics cannot produce secure or reliable systems, unless they are complemented with

appropriate realizations. We need an approach where we can specify these NFRs from

the beginning of software development, considering the semantics of the application

and where iterations are done between requirements and design. Only a methodology

of this type can produce secure/reliable systems; it does not have to use patterns but it

must consider all lifecycle stages and all architectural levels. There are many ap-

proaches to build secure systems, in [22] we identified over 17 methodologies but

none of them uses tactics explicitly. By methodology we mean a complete approach

to develop security applications. We are considering how to enhance our own meth-

odology [7] with the use of tactics and how to produce a lightweight version of it.

References

1. H. Bagheri and K. Sullivan, “A formal approach for incorporating architectural tactics into

the software architecture”, Procs. of SEKE 2011, 770-775.

2. L. Bass, P. Clements, and R. Kazman, Software architecture in practice (2nd Ed), Addison-

Wesley 2003.

3. L. Bass, P. Clements, and R. Kazman, Software architecture in practice (3rd Ed), Addison-

Wesley 2012.

4. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal, Pattern-oriented

Software Architecture, Wiley, 1996.

5. J. M. Cañete, “Annotating problem diagrams with architectural tactics for reasoning on

quality requirements”, Information Proc. Letters, 112, 2012, 656-661.

6. L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, NFRs in software engineering, Kluwer

Acad. Publ., Boston, 2000.

7. E. B. Fernandez, M. M. Larrondo-Petrie, T. Sorgente, and M. VanHilst, "A methodology

to develop secure systems using patterns", Chapter 5 in "Integrating security and software

engineering: Advances and future vision", H. Mouratidis and P. Giorgini (Eds.), IDEA

Press, 2006, 107-126.

8. E. B. Fernandez, Nobukazu Yoshioka, Hironori Washizaki, and Michael VanHilst, "An

approach to model-based development of secure and reliable systems", Procs. Sixth Inter-

national Conference on Availability, Reliability and Security (ARES 2011), August 22-26,

Vienna, Austria.

9. E. B. Fernandez, and H. Astudillo, “Should we use tactics or patterns to build secure sys-

tems?”, First International Symposium on Software Architecture and Patterns, in conjunc-

tion with the 10th Latin American and Caribbean Conference for Engineering and Tech-

nology, July 2012, Panama City, Panama, 23-27.

10. E. B. Fernandez, Security patterns in practice - Designing Secure Architectures Using

Software Patterns, Wiley Series on Software Design Patterns, June 2013.

11. B. Gallego, A. Muñoz, A. Maña, D. Serrano, “Security patterns, towards a further level”,

Procs. SECRYPT 2009, 349-356

12. D. Gollmann, Computer security (2nd Ed.), Wiley, 2006.

13. N. B. Harrison and P. Avgeriou, “How do architecture patterns and tactics interact? A

model and annotation”, The Journal of Systems and Software, 83, 2010, 1735-1758.

14. Suntae Kim, Dae-Kyoo Kim, Lunjin Lu, Sooyong Park, “Quality-driven architecture de-

velopment using architectural tactics”, Journal of Systems and Software, 2009

15. P. G. Neumann, Principled assuredly trustworthy composable architectures, Final SRI re-

port to DARPA, December 28, 2004.

16. Christopher Preschern, "Catalog of Security Tactics linked to Common Criteria Require-

ments", Procs. of PLoP 2012

17. Indrakshi Ray, R. B. France, N. Li, G. Georg, “An aspect-based approach to modeling ac-

cess control concerns”. Inf. & Soft. Technology, (9): 575-587 (2004)

18. J. Ryoo, P. Laplante, and R. Kazman, “A methodology for mining security tactics from se-

curity patterns”, Procs. of the 43rd Hawaii International Conference on System Sciences,

2010, http://doi.ieeecomputersociety.org/10.1109/HICSS.2010.18

19. J. Ryoo, P. Laplante, and R. Kazman, “Revising a security tactics hierarchy through de-

composition, reclassification, and derivation”, 2012 IEEE Int. Conf. on Software Security

and Reliability Companion, 85-91.

20. J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems”,

Procs. of the IEEE, vol. 63, No 9, Sept.1975, 1278-1308

21. R. N. Taylor, N. Medvidovic, and N. Dashofy. Software Architecture: Foundation, Theo-

ry, and Practice, Wiley, 2010.

22. A. V. Uzunov, E. B. Fernandez, and K. Falkner, “Engineering Security into Distributed

Systems: A Survey of Methodologies,” Journal of Universal Computer Science Vol. 18,

No. 20, 2920-3006.

23. A. Uzunov and E. B. Fernandez, “Cryptography-based security patterns and security solu-

tion frames for networked and distributed systems”, submitted for publication

24. M. VanHilst, E. B. Fernandez, and F. Braz, "A multidimensional classification for users of

security patterns", Journal of Res. and Practice in Information Technology, vol. 41, No 2,

May 2009, 87-97

25. H. Washizaki, E. B. Fernandez, K. Maruyama, A. Kubo, and N. Yoshioka, “Improving the

classification of security patterns”, Procs. of the Third Int. Workshop on Secure System

Methodologies using Patterns (SPattern 2009).

