A Systematic Mapping Review on Cooperative and Collaborative Learning in Engineering and Computing

José Antonio Pow-Sang, Ph.D. in Informatics Engineering, Dennis-Cohn-Muroy, Msc. in Informatics, and Natali Flores-Lafosse, Msc. in Informatics
Pontificia Universidad Católica del Perú, Peru, {japowsang, dennis.cohn, natali.flores}@pucp.edu.pe

Abstract—Cooperative or collaborative learning is a type of active learning in which students have to work in groups. This paper aims to identify and to present the current research on cooperative and collaborative learning in Engineering and Computing that is available since 2012. A systematic mapping study was therefore performed to classify the selected studies using the following criteria: learning technique, undergraduate or graduate program, and research type. A total of 2999 studies were identified, of which only 112 studies were selected for this review. According to the analysis, problem-based learning is the technique with more studies published in Engineering and Computing.

Keywords--systematic mapping; cooperative learning, collaborative learning, engineering education, computing education.

Digital Object Identifier (DOI):
http://dx.doi.org/10.18687/LACCEI2017.1.1.347
ISSN: 2414-6390
A Systematic Mapping Review on Cooperative and Collaborative Learning in Engineering and Computing

José Antonio Pow-Sang, Ph.D. in Informatics Engineering, Dennis-Cohn-Muroy, Msc. in Informatics, and Natali Flores-Lafosse, Msc. in Informatics
Pontificia Universidad Católica del Perú, Peru, {japowsang, dennis.cohn, natali.flores}@pucp.edu.pe

Abstract— Cooperative or collaborative learning is a type of active learning in which students have to work in groups. This paper aims to identify and to present the current research on cooperative and collaborative learning in Engineering and Computing that is available since 2012. A systematic mapping study was therefore performed to classify the selected studies using the following criteria: learning technique, undergraduate or graduate program, and research type. A total of 2999 studies were identified, of which only 112 studies were selected for this review. According to the analysis, problem-based learning is the technique with more studies published in Engineering and Computing.

Keywords— systematic mapping; cooperative learning; collaborative learning; engineering education; computing education.

I. INTRODUCTION

Cooperative and collaborative learning focuses on the premise that the students can learn better by doing and working with each other [9]. This kind of learning techniques is applied in engineering and computing education. Although the terms "cooperative" and "collaborative" have similar meanings, there is debate or discussion about when to apply one term or another about learning techniques, but both are types of group work. Agawa [1] points out that both cooperative and collaborative learning are based on two essential elements: positive interdependence and individual responsibility.

A systematic literature review is a method to analyze, evaluate and interpret all relevant studies to a particular research question, or specific area, or phenomenon of interest [6]. A systematic mapping review is a variant of this technique in which the evidence is plotted at a high level of granularity. Its main focus is rather on classification, conducting a thematic analysis and identifying publication fora [7].

This paper presents the results of a mapping study to identify and categorize a set of primary studies covering cooperative and collaborative learning in engineering and computing education.

The remainder of the paper is organized as follows: Section 2 describes the review process followed for the systematic review; Section 3 discusses our findings; and finally, conclusions and future work are included.

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2017.1.1.347
ISSN: 978-0-9993443-0-9
ISSN: 2414-6390

II. REVIEW PROCESS

This study was conducted according to the guidelines established by Petersen et. al [7] and was based on the PICO (Population, Intervention, Comparison, Outcomes) method [1]. The definition of the general concepts through the use of PICO is detailed in the following table.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Undergraduate or postgraduate students in engineering and computing</td>
</tr>
<tr>
<td>Intervention</td>
<td>Cooperative or collaborative learning technique</td>
</tr>
<tr>
<td>Comparison</td>
<td>Traditional lecture or laboratory</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Experiences in the application of cooperative or collaborative learning techniques in lectures or laboratories</td>
</tr>
</tbody>
</table>

The purpose of this study is to know if cooperative or collaborative learning techniques are being applied in engineering and computing courses at undergraduate or postgraduate level. The research questions that were defined for this review are:

RQ1. Which publication channels (journals or conferences) are the main targets for cooperative and collaborative learning research?
RQ2. Which cooperative or collaborative learning techniques are applied in Engineering in Computing?
RQ3. In which areas of engineering and computing have cooperative or collaborative learning techniques been applied?
RQ4. What research method was used in the evaluation of the application of these learning techniques?

A. Search strategy

The search terms used in this study were developed using the following criteria, similar to a systematic review study [8]:

(i) Besides the term “computing”, we considered the five defined sub-disciplines of the computing curricula proposed by IEEE and ACM [5] “software engineering”, “computer science”, “information systems”, “information technology”, and “computer engineering”.
(ii) Include “informatics” as a synonym of “computing.”

(iii) Include “software development” because is a term widely used in computing.

The search string that was employed in this review was:

"(cooperative learning" OR "collaborative learning") AND (engineering OR informatics OR computing OR "software engineering" OR "computer science" OR "information technology" OR "software development" OR "information systems" OR "computer engineering").

B. Search process

The search process was conducted using the following databases: Scopus, Web of Science (WOS), and IEEE Xplore. WOS database used in this SLR contains the main collection of Web of Science, BIOSIS, Current Contents Connect, Derwent Innovations Index, Inspec, KCI, Medline, and SciELO.

C. Selection of studies

The following inclusion and exclusion criteria were applied to the select publications:

Inclusion Criteria. (i) The abstract of the study must indicate the application of one of the cooperative or collaborative learning techniques included in Appendix I (the list of learning techniques were obtained in [2][4])

Exclusion Criteria. (i) Studies with experiences not related to higher education (undergraduate or graduate) in engineering or computing (ii) Publications without peer-review (e.g. prefaces, books, editorials, etc.) (iv) Studies that shows the utilization of a software tool that supports a cooperative or a collaborative learning technique without the evaluation of the jigsaw technique.

The search process was conducted during July 2016. We obtained 2999 results from the three consulted databases. After deleting the duplicates, we select the articles that had the terms of Appendix I in their abstracts, and we finally selected 348 papers.

We applied inclusion and exclusion criteria in those 348 papers in two iterations. In the first iteration, each author reviewed 146 papers (only titles and abstracts) and extract relevant information according to our defined research questions. After a meeting to discuss our findings, in the second iteration, each author checked the 146 papers (titles and abstracts) reviewed by another author. Finally, we selected 112 studies (The appendix shows the list of selected papers).

III. FINDINGS

This section shows our findings according to the defined research questions.

A. RQ1. Publications channels

The selected studies were published in conferences (59 papers), journals (51 articles) and books (2 book chapters). Table II reports the top-five channels with more publications.

<table>
<thead>
<tr>
<th>Conference</th>
<th>Number of papers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEE Annual Conference and Exposition</td>
<td>10</td>
<td>16.95%</td>
</tr>
<tr>
<td>International Technology, Education, and Development Conference (Inted)</td>
<td>3</td>
<td>5.08%</td>
</tr>
<tr>
<td>Tecnologías Aplicadas a la Ensenanza de la Electrónica (Technologies Applied to Electronics Teaching)</td>
<td>3</td>
<td>5.08%</td>
</tr>
<tr>
<td>IEEE Global Engineering Education Conference (EDUCON)</td>
<td>2</td>
<td>3.39%</td>
</tr>
<tr>
<td>SIGCSE - ACM Technical Symposium on Computer Science Education</td>
<td>2</td>
<td>3.39%</td>
</tr>
<tr>
<td>SEFI Annual Conference</td>
<td>2</td>
<td>3.39%</td>
</tr>
<tr>
<td>International Conference on Teaching and Learning in Higher Education</td>
<td>2</td>
<td>3.39%</td>
</tr>
<tr>
<td>International Journal of Engineering Education</td>
<td>2</td>
<td>3.39%</td>
</tr>
<tr>
<td>The Annual Hawaii International Conference on System Sciences</td>
<td>2</td>
<td>3.39%</td>
</tr>
</tbody>
</table>

We could find the selected studies were published in 40 conference proceedings, 36 journals, and 2 books. Table III shows the top-nine conferences with more papers, and Table IV shows the top-eight conferences with more articles.

<table>
<thead>
<tr>
<th>Journal</th>
<th>Number of Articles</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Transactions on Education</td>
<td>6</td>
<td>11.76%</td>
</tr>
<tr>
<td>International Journal of Engineering Education</td>
<td>5</td>
<td>9.80%</td>
</tr>
<tr>
<td>Journal of Universal Computer Science</td>
<td>2</td>
<td>3.92%</td>
</tr>
<tr>
<td>Journal of Korea Academia-Industrial cooperation Society</td>
<td>2</td>
<td>3.92%</td>
</tr>
<tr>
<td>Computers in Human Behavior</td>
<td>2</td>
<td>3.92%</td>
</tr>
<tr>
<td>Science and Engineering Ethics</td>
<td>2</td>
<td>3.92%</td>
</tr>
<tr>
<td>International Journal of Applied Engineering Research</td>
<td>2</td>
<td>3.92%</td>
</tr>
<tr>
<td>Wireless Personal Communications</td>
<td>2</td>
<td>3.92%</td>
</tr>
</tbody>
</table>

B. RQ1. Publications channels
We could observe that some studies referred to more than one learning technique. Table IV reports the number of times a technique has been applied.

<table>
<thead>
<tr>
<th>Learning technique</th>
<th>Number of times reported</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>problem-based learning</td>
<td>54</td>
<td>43.20%</td>
</tr>
<tr>
<td>game</td>
<td>20</td>
<td>16.00%</td>
</tr>
<tr>
<td>problem-solving</td>
<td>12</td>
<td>9.60%</td>
</tr>
<tr>
<td>project-based or project-oriented</td>
<td>11</td>
<td>8.80%</td>
</tr>
<tr>
<td>jigsaw</td>
<td>8</td>
<td>6.40%</td>
</tr>
<tr>
<td>team-based</td>
<td>6</td>
<td>4.80%</td>
</tr>
<tr>
<td>case studies</td>
<td>5</td>
<td>4.00%</td>
</tr>
<tr>
<td>peer instruction</td>
<td>3</td>
<td>2.40%</td>
</tr>
<tr>
<td>collaborative writing</td>
<td>2</td>
<td>1.60%</td>
</tr>
<tr>
<td>role-play</td>
<td>1</td>
<td>0.80%</td>
</tr>
<tr>
<td>case-based</td>
<td>1</td>
<td>0.80%</td>
</tr>
<tr>
<td>think-pair-share</td>
<td>1</td>
<td>0.80%</td>
</tr>
<tr>
<td>pogil</td>
<td>1</td>
<td>0.80%</td>
</tr>
<tr>
<td>Total</td>
<td>125</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

As can be observed in Table V, the most applied technique is problem-based learning, following by game.

C. RQ3. Areas of engineering or computing
We could observe that one of the studies referred to more than one area. Table VI reports the number of times a learning technique was applied in an area.

<table>
<thead>
<tr>
<th>Areas</th>
<th>Number of times reported</th>
<th>Percentage of articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>63</td>
<td>55.26%</td>
</tr>
<tr>
<td>Computing</td>
<td>36</td>
<td>31.58%</td>
</tr>
<tr>
<td>Not specified</td>
<td>15</td>
<td>13.16%</td>
</tr>
<tr>
<td>Total</td>
<td>113</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

In Table VI, “not specified” means that it cannot be determined whether the study is in engineering or computing. Table VII shows the top-five programs (undergraduate or graduate) in which were applied those learning techniques.

<table>
<thead>
<tr>
<th>Program (undergraduate or graduate)</th>
<th>Number of articles</th>
<th>Percentage of articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>12</td>
<td>30.00%</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>5</td>
<td>12.50%</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>3</td>
<td>7.50%</td>
</tr>
<tr>
<td>Aerospace and Mechanical Engineering</td>
<td>2</td>
<td>5.00%</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>2</td>
<td>5.00%</td>
</tr>
</tbody>
</table>

D. RQ5. Research methods used
Unfortunately, most articles included very little information in their abstract about the research method employed.

IV. CONCLUSIONS AND FUTURE WORK
This paper presents the results of a systematic mapping review of the application of cooperative or collaborative learning techniques in engineering and computing. 112 studies were selected, and they show cooperative and collaborative learning techniques were applied in laboratories and classrooms. Three of the four research questions could be answered with the information of the abstracts. Unfortunately, the question about the applied research methods in those studies could not be answered because many of the abstracts did not include information about them.

It is planned as a future work include other databases to find more papers related to the application of cooperative or collaborative learning. It remains as future work to check introductions and conclusions of the selected papers in order to respond RQ4.

REFERENCES
APPENDIX I: NAMES OF LEARNING TECHNIQUES

think-pair-share, role-play, jigsaw, problem-solving, case studies, structured problem solving, group investigation, dyadic essays, collaborative writing, team games tournaments, tandem, discussion-based, project-oriented learning, project-based learning, problem-based learning, think aloud problem solving, round table, rally table, notetaking pair, three-step interview, round robin, buzz groups, talking chips, critical debate, learning cell, fishbowl, test-taking team, send-a-problem, affinity grouping, group grid, team matrix, sequence chains, world webs, dialogue journal, dyadic essay, peer editing, team anthology, paper seminar, team scavenger hunt, quizo, team jeopardy, friendly feud, game, pogil, team-based

APPENDIX II: LIST OF SELECTED PAPERS

7. Arboleya, A.; Las-Heras, F.(2014). Improving independent learning and communication skills of students in last year of engineering degrees through the use of project-based learning methodologies. Tecnologías Aplicadas a la Ensenanza de la Electronica (Technologies Applied to Electronics Teaching) (TAE)
16. Chang, Shu-Hsuan; Yu, Li-Chih; Kuo, Yen-Kuang; Mai, Yi-Ting; Chen, Jen-De(2015). Applying Online Peer Assessment With Total Quality Management To Elevate Project-Based Learning Performance. Journal Of Baltic Science Education
30. Echeverria, Alejandro; Amestica, Matias; Gil, Francisca; Nussbaum, Miguel; Barrios, Enrique; Leclerc, Sandra(2012). Exploring different technological platforms for supporting co-located collaborative games in the classroom. Computers in Human Behavior
31. Fatahi B., Khabbaz H.(2015). Research-based computer games to train civil engineering students to be lifelong learners. SEFI Annual Conference
36. German A.(2013). Jump-starting team-based learning in the computer science classroom. Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE
40. Grissom, Scott(2013). Introduction to Special Issue on Alternatives to Lecture in the Computer Science Classroom. ACM Transactions On Computing Education
44. Hanyak M.E., Jr.(2015). Conceptual framework to help promote retention and transfer in the introductory chemical engineering course. Advances in Engineering Education
55. Jose Arevalo, Maria; Silvero, Guadalupe; Lopez-Coca, Ignacio(2013). Design and implementation of a problem-based learning scenario for a general chemistry lab course for civil engineering undergrads. International Conference on Education and New Learning Technologies (EDULEARN)
59. Laville F.(2012). A teaching experience in the industrial acoustics integrating pedagogy of cooperation, computer laboratory and session project [Une expérience d’enseignement de l’acoustique industrielle intégrant pédagogie de la coopération, laboratoire informatique et projet de session]. Canadian Acoustics - Acoustique Canadienne
64. Maiorana F., Giordano D.(2014). A constructivist approach to teaching index selection strategies and database design. WIT Transactions on Information and Communication Technologies
68. Markuerkiaga, Leire; Errasti, Necane; Ignacio Igartua, Juan(2013). Techno-cube, a problem-based learning project based on current industry demands. International Technology, Education and Development Conference (INTED)

80. Othman, Mahfuzadz; Othman, Muhaini; Hussain, Fazlin Marini(2013). Designing Prototype Model of an Online Collaborative Learning System for Introductory Computer Programming Course. INTERNATIONAL CONFERENCE ON UNIVERSITY LEARNING AND TEACHING (INCUIT)

88. Pow-Sang J.A.(2015). Replacing a traditional lecture class with a jigsaw class to teach analysis class diagrams. International Conference on Interactive Collaborative Learning

99. Self, Brian P.; Shuman, Larry J.; Besterfield-Sacre, Mary; Diefes-Dux, Heidi; Moore, Tamara; Christ, John; Miller, Ronald L.; Kean, Andrew; Hamilton, Eric(2012). Model Eliciting Activities: Lessons Learned from A Five-Year, Seven Institution Collaboration. International Technology, Education and Development Conference (INTED)

100. Sirisuphab A., Silapachote P.(2013). Rule-based systems made easy with battlehip games: A well-received classroom experience: Combination of activity-based and cooperative learning in a competitive environment. IEEE International Conference on Teaching, Assessment and Learning for Engineering, TALE

