
This material is based upon work supported by the National Science Foundation under Grant number DUE-1562773

An approach to Teaching Software Testing Supported by Two
Different Online Content Delivery Methods

Ingrid A. Buckley, PhD1, and Peter J. Clarke, PhD2
1Florida Gulf Coast University, USA, ibuckley@fgcu.edu

2Florida International University, USA, clarkep@cis.fiu.edu

Abstract–Software testing is an important aspect of software
development, which often is left until the end of the software
development life cycle. As a result, testing is generally neglected
or inadequately performed, resulting in poor quality software
products. To ameliorate this, universities are now offering courses
in software testing to introduce this important skill to students
before they begin their careers in industry. At our university,
undergraduate students take software testing in the last semester
of their degree program. One of the objectives of this course is to
teach students how to perform continuous software testing at each
stage and phase of the software life cycle, not just at the end of the
development process. This course is delivered using a hybrid
approach. We are interested in determining whether presenting
this information online in an interactive manner that employs a
combination of collaborative learning, gamification, problem-
based learning, and social interaction leads to higher levels of
knowledge gain in software testing. We conducted a study using
(i) an interactive online learning system called SEP-CyLE-
Software Engineering and Programming Cyberlearning
Environment (Experimental Group) and (ii) a plain static text
formatted website with no interactivity (Control Group). We
evaluate the data collected and discuss the implications of our
findings.

Keywords- Software Testing, Cyber learning, software
engineering, software development, engineering educational tool

I. INTRODUCTION

Software continues to impact all aspects of our lives,
including the way we use our phones, computers, home
appliances, medical devices, and cars, just to name a few.
Due to the ubiquitous nature of software there is a great
demand for skilled software developers. Software testing is a
subset of software development and is an essential aspect to
ensure that software is built correctly to reduce bugs and
vulnerabilities that can threaten the software we rely on.
Software vulnerabilities and bugs have caused significant lost
[13], [17] and inconvenience when they fail or are exploited
by hackers across different domains: health care, financial,
government, telecommunications and transportation systems.

 In general software testing is an often neglected
aspect of software development that is either rushed or scaled
down significantly to meet deadlines. This approach is often
adopted by students who are already inexperienced in
software development. Students in particular generally, test
in a way that shows that their programs work, often times,
they perform very little testing to find bugs or defects in their
programs; and testing is rarely ever an automated, planned or
systematic activity. Inadequate testing is a major issue in the

software development field and bugs and defects account for
huge losses [13] and there is usually a huge financial cost to
customers when testing is neglected or mismanaged. In
academia it is important to motivate students to take a
responsible approach to software development by integrating
the teaching of testing with the goal of finding and correcting
bugs [2]. The cost of inadequate testing is high since it
increases maintenance cost, negatively impacts customer
perception of a product and leads to loss in profits.

Due to our increasing reliance on software, there is a
need to educate and equip students with effective software
testing skills and knowledge. In this paper, we conducted a
study to find an effective approach to teach undergraduate
students software testing principles. The study was
conducted at Florida Gulf Coast University. The testing
principles are presented to students supported by two
different formats to determine which approach is more
effective at relaying these important skills to novice software
testers and developers [2].

The goal of this study is to identify how well students
assimilate software testing knowledge in a self-paced and
feedback driven online learning environment. The learning
environment used in the study is SEP-CyLE (Software
Engineering and Programming Cyberlearning Environment)
[4] that contains learning content in the form of learning
objects and tutorials. SEP-CyLE provides an instructor with
the ability to use several embedded learning and engagement
strategies (ELESs) to improve student learning. These ELESs
are collaborative learning, gamification, problem-based
learning, and social interaction.

The outline of the paper is as follows. Section 2 presents
a background on software testing and learning content and
engagement strategies. Sections 3 briefly introduce the online
content delivery systems used in the studies in this paper.
Section 4 presents a study including the objective of the
study, study setup and an evaluation of the results. Section 5
discusses related work and Section 6 provide some
conclusions.

2. BACKGROUND

In this section we present background on software
testing at it relates mainly to the content of the courses
mentioned in the studies in Section 4. In addition, the learning
content and engagements strategies used in the online
delivery systems are also briefly introduced.

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2018.1.1.377
ISBN: 978-0-9993443-1-6
ISSN: 2414-6390

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru.

This material is based upon work supported by the National Science Foundation under Grant number DUE-1562773

2.1 Software Testing
There are many definitions used in the literature for

software testing. The IEEE Standard defines software testing
as the dynamic verification of the behavior of a program on
a finite set of test cases, suitably selected from the usually
infinite executions domain, against the expected behavior [1].
Copeland states that in its simplest form testing is the process
of comparing “what is” with “what ought to be” [6]. Testing
approaches can be grouped into three broad categories, black
box testing, white box testing and gray box testing.

In black box testing the module to be tested is treated as
a black box with only the inputs and outputs accessible to the
tester, thus this approach is based solely on the requirements
and specifications of the module. White box testing (or glass
box testing) is based on the internal structure of the module,
such as the control and data flow paths in the module. Gray
box testing is a hybrid of black box and white box testing
allowing the tester to peek into the module to see how it is
implemented [6], [14].

Testing software is usually done at three levels, these
are: unit, subsystem and system. Unit testing focuses on
verifying the smallest meaningful module in the software, for
object-oriented (OO) programs this is usually the class.
Subsystem testing focuses on a group of class that represents
a component of a system that provides services to other
component, in OO programs the class are group into a
package. Before subsystem testing can be performed,
individual classes in the in the subsystem must be combined
by performing integration testing. System testing is verifying
the entire software system against the requirements of the
client or end-user [6], [14].

2.2 Learning Content and Engagement Strategies
The learning content in the online delivery systems are

in the form of learning objects and tutorials. A learning object
(LO) is a module of content that usually requires 2 to 15
minutes for completion, is self-contained, interactive,
reusable and can be aggregated [15]. Each LO has four
components: Learning Objective – describes audience the LO
targets, the behavior expected of the learner, condition under
which the behavior occurs, and accepted standard of
behavior; Content – learning material to support the
objective; Practice – exercises for learners to review the facts
and key concepts; Assessment - a means to check if the
learner has achieved the learning objective. The tutorials are
similar to LOs but there are no Practice or Assessment
components. The LOs are used to deliver key facts and
concepts to the learner, while the tutorials focuses on
providing information on how to use various tools associated
with the specific discipline, e.g. software unit testing tool –
JUnit [10].

The learning and engagement strategies (LESs) used in
one of the online delivery system (SEP-CyLE) include
collaborative learning, gamification, problem-based
learning, and social interaction. Clarke et al. [5] introduce
how these LESs are used in WReSTT-CyLE (Web-Based

Repository of Software Testing Tutorials: a Cyberlearning
Environment) [3] which is the forerunner to SEP-CyLE.
Collaborative learning is where two or more people work in
groups mutually searching for understanding, solutions, or
meanings, or creating a product. Gamification uses game
design elements and game mechanics to improve user
experience and engagement with a system. Social Interaction
enhances knowledge acquisition using various social
activities. Problem-based learning, which is new in SEP-
CyLE, it is a learner-centered instructional method in which
students learn through solving ill-structured problems [12].

3. ONLINE LEARNING SYSTEMS

In this section we describe the two online learning
systems used in the study presented in this paper. These
online learning systems are the Simple WReSTT and SEP-
CyLE, we first introduce SEP-CyLE then describe how
Simple WReSTT differs from SEP-CyLE.

3.1 Software Engineering and Programming Cyberlearning
Environment (SEP-CyLE)

SEP-CyLE is a NSF funded project that uses a
combination of learning and engagement strategies (LESs) to
get students involved in the learning process. The project
aims to provide a cyberlearning environment that facilitates
the improvement of students’ conceptual understanding and
practical skills in software engineering and programming.
The main goals of SEP-CyLE are to create new learning
materials and develop faculty expertise to significantly
increase the number of undergraduate students that are
exposed to testing methodologies and tools in undergraduate
courses with a programming component.

Fig. 2 shows the hierarchical structure of the SEP-CyLE
functionality. SEP-CyLE contains 5 major components
similar to the ones for WReSTT-CyLE as described in Clarke
et al. [5]. These components include: (1) Authentication –
requires all users to log on to the system; (2) Embedded
learning and Engagement Strategies (ELESs) – these
strategies include collaborative learning, gamification,
problem-based learning and social interaction; (3) Learning
Content – contains the digital learning objects (DLOs) and
tutorials accessible by the students; (4) Administration –
provide access to the administrator to configure SEP-CyLE,
e.g., setting up reports and configuring courses; and (5)
Course Management – provides instructors with the ability to
configure and generate reports related to a course. Note that
there are differences between WReSTT-CyLE and SEP-
CyLE , that is, the following elements are not in WReSTT-
CyLE: problem-based learning component (2.3), chat (2.4.4),
and ratings (2.4.5).

The inclusion of DLOs was an important enhancement
to the contents of WReSTT-CyLE for software testing
education and community. The DLOs were made in response
to feedback from users in the academic community.

This material is based upon work supported by the National Science Foundation under Grant number DUE-1562773

STEM-CyLE

Learning Content

Activity
 Stream

Discussion
 Boards

Reports User
 Mgmt.

Content
 Mgmt.

Administration

Reports

Course
 Management

Site
 Config.

3 4 5

5.1

2.4.1 2.4.2

4.1 4.2 4.3 4.4

Authentication

1 2

ELESs

Learning
 Objects

3.1

Tutorials

3.2

Collaborative
Learning

2.1

Social
Interaction

2.42.2

Gamification
Problem-Based

Learning
2.3

Virtual
 Teams

Virtual
 Points

2.2.1

Profile

2.4.3

2.1.1

Leader
 Board

2.2.2

VPBE

2.3.1

Chat
2.4.4

Ratings
2.4.5

 Legend:

 Student Instructor Administrator

ELESs – Embedded Learning and Engagement Strategies VPBE – Virtual Problem-Based Environment

Course
 Config.

5.2.1

5.2

Courses

Fig. 1: Block diagram showing the hierarchical structure of the functions
of SEP-CyLE.

These enhancements include: (1) presenting the material
in the learning objects using varied formats (e.g., video, audio
and text); (2) new learning objects on testing techniques for
black-box and white-box testing; and (3) new tutorials for
testing tools based on cross-platform IDE (e.g., Eclipse and
NetBeans).The transition to learning objects from tutorials
allows for the sequencing of different levels of content on a
specific testing topic and the ability to link objects on testing
techniques to tutorials on testing tools. SEP-CyLE improved
on WReSTT-CyLE by including a LO creator that allows
instructors to create DLOs on various topics and share them
with the community.

The ELESs are implemented in SEP-CyLE to provide
the following services to the students: Collaborative learning
– students are placed in virtual teams and participate in both
team and class-wide activities, e.g., completion of DLOs and
posting messages to the class forum. Gamification – is
centered on the use of virtual points where students obtain
virtual points when they complete various tasks, such as
completing DLOs and passing the quiz, posting to the forum,
and bonus points are awarded for teams that complete
activities. Social Interaction – students are provided with
features that include student profiles, message forums, and
ratings of posts and DLOs, among others. The problem-based
learning component is not yet fully implemented in SEP-
CyLE and is expected to incorporate the use of an IDE where
students can test simple programs.

Fig. 2 shows a student’s course page in the demo version
of SEP-CyLE for COP 1000. The top of the page shows the
specifics of the course, including the course number, and the
professor’s name. Below the course information is a link to

the course forum, followed by links to the assigned DLOs and
tutorials (not shown).

Fig. 2: Student course page in SEP-CyLE.

The DLO information includes a description of the DLO,
start and end dates when the DLO will be available, minimum
passing score, number of attempts on the recorded
assessment, and grading scheme. Below the DLOs on the left
are the members of the team and on the right is the course
leader board for the top 3 students in the class showing their
virtual points. The final row of the page shows the students’
course activities on the left, and the course activities for the
all the students in the class on the right.

3.2 Simple Content Delivery System (Simple WReSTT)
A version of WReSTT-CyLE was created to assist with

performing studies in the classroom, we refer to it as Simple
WReSTT (http://simple.wrestt.cis.fiu.edu/). This version of
WReSTT is a plain web site which provides access to all the
learning content in SEP-CyLE (and WReSTT-CyLE) but
does not contain any of the ELESs. This means that
instructors cannot use collaborative learning, gamification, or
social interaction in their classes through the Simple
WReSTT. In addition there is no user authentication required
thereby providing students with easy access to the DLOs and
tutorials.

The DLOs in Simple WReSTT do not provide the
practice or assessment quizzes, the learning content is
presented on a single page, and there is no facility for students
to rate the tutorial or post comments on the quality of the
DLO. All the tutorials in SEP-CyLE are available in Simple

This material is based upon work supported by the National Science Foundation under Grant number DUE-1562773

WReSTT but do not allow students to rate the tutorial or post
comments on the quality of the tutorial. Finally DLOs and
tutorials cannot be assigned with a deadline for submission.
It should be noted that students using SEP-CyLE can also
access the DLOs and tutorials using the menu located in the
upper left of the student’s dashboard (3 bars), see Fig. 2.

4. SOFTWARE TESTING STUDY

In this section we describe the study that was performed
to evaluate the impact of using SEP-CyLE in the classroom
at Florida Gulf Coast University. The goal of the study is to
determine if given two different online learning systems, if
there a significant difference between university seniors
learning software testing principles using SEP-CyLE and
those who do not?

4.1 Study Setup
The study included students across two sections of a

software testing course. This course is a hybrid required class
that seniors typically complete in the last semester of their
degree program. Each section of the course meets with the
instructor once per week and students are assigned online
work outside of class time. Here the word hybrid, describes
a course in which some traditional face-to-face time has been
replaced by online learning activities. On the first day of
class for each section, students were given an overview of the
software testing study and they were invited to volunteer to
participate in the study. The required student consent forms
were supplied to those who chose to participate. Note that all
students are still given access to the software testing material
whether they volunteered to have their data used as a part of
the study or not.

The study consisted of a control and an experimental
group. The students enrolled in the 1st section of the course
formed the control group. They were given access to various
software testing materials on an open plain text-based
website without interactivity (Simple WResTT). While,
students in the 2nd section of the course formed the
experimental group. They were assigned the same learning
material on SEP-CyLE, where they got to experience an
interactive learning environment with ELESs. The
experimental group had access to quizzes on each assigned
software testing learning object (LO) and each of the students
in that group was given a unique login to access SEP-CyLE.

Throughout the duration of the course, students in both
groups were assigned a series of supplemental LOs on black-
box and white-box testing. In this study, students completed
a pretest and posttest at the start at the course and again at the
end of the course, respectively. The pretest/posttest is
comprised of 10 software testing questions which includes
questions on various aspects of software testing such as black
box and white box testing techniques, bugs, branch, and
statement coverage [6], [14].

4.2 Evaluation of the Results
40 students completed the pretest and 36 students

completed the post test. Overall, the results in Table 1

illustrates that there was a 50% increase in the mean score of
the control group versus 15% for the experimental group.
Likewise, there was a 60% increase in the median score of
the control group versus 14% for the experimental group.
There was a 4.3% decrease in the standard deviation of the
scores of the control group versus 17.41% for the
experimental group. Both groups seem to perform at the same
posttest level, averaging around 80%. However the control
group performed significantly lower at the pretest stage,
averaging around 51%, compared to 70% for the
experimental group.

TABLE 1

Control Group Experimental Group

Pretest Posttest % Change Pretest Posttest % Change

Mean: 51 77 50 70 81 15

Median: 50 80 60 70 80 14

Std.
Deviation: 22.2 21.24 -4.3 22.5 18.38 -17.41

Comparison performance between control and experimental group

Throughout the duration of the study the students shared
the challenges they were experiencing. Students in the
experimental group stated that the interactive environment
had some glitches that impacted their ability to learn the
material. For example when taking quizzes when any of the
available answers were selected, it would be marked
incorrectly even if it was correct. Some students mentioned
that they also were not given the option to submit their
practice quizzes; after spending the time to go through each
question. Some students expressed that there was missing
information on some learning objects. Students in the control
group, who utilized the plain website, did not experience any
of the problems mentioned above and did not make any
complaints about the contents or format on the plain website.
Additionally, the plain website did not require username and
password to gain access to the software testing learning
objects, while login was required to access the learning
objects on SEP-CyLE. It may be that these technical
difficulties interfered with the enhancements of the
interactive website used by the students in the experimental
group, thus limiting its use from its fullest potential.

Additional factors may be required to help in
determining whether easy access to the software testing
material was the reason why students in the control and
experimental groups performed equally on the posttest.
Looking more closely at student factors, in general, students
in the control group completed all assignments given,
however some students in the experimental group were more
prone to not submit assignments. This likely impacted their
mastery of the material. Similarly, both groups completed a

This material is based upon work supported by the National Science Foundation under Grant number DUE-1562773

comprehensive software testing final examination and the
mean score for the experimental group was 81% versus 74%
for the control group. Overall both groups completed
quizzes, exams and a group project, and each student in each
section received a course grade, the letter grade distribution
is given below in Fig. 3 and Fig. 4. The grade distribution
shows that overall both groups were on par grade wise.

Fig. 3 Control Group- Course Grade

Fig. 4. Experimental Group - Course Grade

Overall, both the experimental and the control groups
showed improvement in their software testing knowledge and
skills but the control group performed much better on the
posttest. However, they did not perform as well on the pretest
and as such, their posttest performance showed a greater
improvement. Another factor that may have affected the

performance was the interactive cyberlearning environment
(SEP-CyLE) which was a recently developed and launched.
It had some bugs and glitches that may have hampered
students as they tried to complete the LOs and quizzes. This
experience may have prevented students from fully
benefitting from the additional features it had to offer.

The control group did not require a login to access the
material on the plain website, and this may have made it
easier for them to access and consume the material without
experiencing disruptions. In order to better understand what
factors contributed to the experimental group’s lower
performance on the posttest, the study will have to be
repeated using additional controls.

5. RELATED WORK

Several studies have been performed that reinforce the
fact that many software failures could be prevented by
performing basic software testing. Yuan et al. [16] studied
198 randomly sampled real world failures and their findings
state that basic testing of error handling code could prevent
58% of catastrophic failures; and 92% of system failures
were caused due to incorrect handling of non-fatal errors.
Gazzola [11] looked at ways to address faults that cannot be
feasibly tested in house by utilizing the field itself as testbed
for running test cases to uncover bugs. This approach requires
a large diverse testing environment where a large number of
test cases can be run tested with the aim of revealing errors
in a timely manner, which would not be possible to identify
during regular in house testing. This approach presents a
faster and effective means of identifying bugs, however a
large diverse testing environment is not always feasible or
practical.

Other approaches have adopted the use of tools to
uncover bugs. Dolby et al. [7] propose the use of relational
logic and a SAT checker which checks code against software
specifications. In this approach, they encode a program’s
relational logic using a constraint solver to find specification
violations which cause bugs. The SAT checker can check a
mixture of structural and numerical properties written in a
rich specification language on realistic fragments of
programs. Dukes et al. [8] present a case study where five
different tools are used for web application security. They
employed the use of different tools to identify different types
of defects and bugs. This case study exposed students to a
variety of software testing tools. However since each tool is
independent of each other, all of the bugs cannot be viewed
together as a whole in one central integrated development
environment (IDE).

Other approaches, utilize different teaching strategies to
teaching software testing. Buckley et al. [2] proposed a
teaching strategy which leverages the use of basic data
structures to teach the fundamentals of software testing
principles. In this approach, students must first understand
the fundamental properties and constraints of a stack, binary
tree or a recursive problem. The idea is to encourage students
to fully understand the core properties and constrains of a

0

1

2

3

4

5

6

A A- B+ B B- C+ C C-

st
ud

en
ts

Letter Grade

Software Testing- Grade Distribution -
Control Group

0

1

2

3

4

5

6

7

A A- B+ B B- C+ C C-

St
ud

en
ts

Letter Grade

Software Testing- Grade Distribution -
Experimental Group

This material is based upon work supported by the National Science Foundation under Grant number DUE-1562773

system, this is analogous to understanding the requirements
of a system; as this aspect is imperative in order to write
effective test cases to uncover bugs. In this project, students
were given exercises to write test cases that ensure that each
data structure’s properties and constraints are upheld
throughout implementation to uncover hidden bugs. Overall,
the students showed an improvement in their ability to write
test cases that consider the fundamental principles and
constrains surrounding a given problem.

Previous work that is related to the use of WReSTT-
CyLE in the classroom include the work by Fu et al. [9] and
Clarke et al. [5]. Fu et al. [9] employed the use of
gamification in WReSTT-CyLE to teach students software
testing at Florida A&M University. WReSTT-CyLE is a
cyberlearning environment that provides a collaborative and
sustainable platform for learners to continue studying outside
of the classroom.

Similarly, gamification is an emerging pedagogical
technique that is used to engage students in a non-game
context. The results of their study shows that gamification in
conjunction with WReSTT-CyLE increased the engagement
and motivation of students in learning software testing.
Clarke et al. [5] described how WReSTT-CyLE was used to
help students and instructors learn various software testing
techniques and testing tools. The work reported in the paper
was part of a four year project with the objectives of training
instructors in using WReSTT-CyLE in the classroom and
using WReSTT-CyLE to support pedagogy in the classroom.
The results of the project showed a positive impact on the
classes taught by those instructors that attended the
professional development workshops in the project. The
results from a student survey showed that students found the
WReSTT-CyLE site user friendly, they viewed the
collaborative learning LES as positive, and that the course
activity stream social feature encourage team members to
complete their tasks.

6. CONCLUSION

The study presented in this paper illustrates at a high
level that the learning objects provided to students during
their courses provided significant value to students in
learning software testing principles even though the material
was presented using two different online learning systems.
Both the experimental and the control groups showed
improvement in their software testing knowledge and skills
at the end of the course. Even though both group performed
similarly on the posttest, the experimental group performed
better overall on their final examination for the course.
Although there are some clues, it is not clear exactly what
factors may have contributed to the similar performance on
the posttest. The study may have to be repeated with other
measurable controls to better understand the cause. SEP-
CyLE is a promising tool and environment that can be
tailored and adapted to aid instructors in teaching software
testing and other STEM based courses. Once the features are
fine-tuned, SEP-CyLE can become a good supplement tool,
which provides students with feedback and interactivity

outside of the class room that will advance their software
testing knowledge and skills.

REFERENCES
[1] P. Bourque and R. Dupuis, “Guide to the Software Engineering Body of

Knowledge 2004 Version”, IEEE Computer Society, Los Alamitos,
California, 2004.

[2] I. A. Buckley and W. S. Buckley, “Teaching software testing using data
structures”, International Journal of Advanced Computer Science and
Applications (IJACSA), 22(4), 2017.

[3] R. Chang-lau and P. J. Clarke, “Web-based repository of software
testing tutorials a cyberlearning environment (WReSTT-CyLE)”, 2017.
[Online]. Available: http://wrestt.cis.fiu.edu/. [Accessed June 2017].

[4] R. Chang-lau and P. J. Clarke, “Software engineering and
programming cyberlearning environment (SEP-CyLE)”, 2018.
[Online]. Available: https://stem-cyle.cis.fiu.edu/instances [Accessed
Jan. 31, 2018].

[5] P. J. Clarke, D. L. Davis, R. C. Lau, Y. Fu, J. D. Kiper, and G. S. Walia,
“Using WReSTT cyberlearning environment in the classroom”,
Proceedings of the 124rd Annual ASEE Annual Conference and
Exposition, June 2017. Paper ID: 19953.

[6] L. Copeland, A Practitioner's Guide to Software Test Design. Artech
House, Inc., Norwood, MA, USA, 2003.

[7] J. Dolby, M. Vaziri, and F. Tip, “ Finding bugs efficiently with a sat
solver”, Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC-FSE '07, pages 195-204,
New York, NY, USA, 2007. ACM.

[8] L. Dukes, X. Yuan, and F. Akowuah, “A case study on web application
security testing with tools and manual testing”, In 2013 Proceedings
of IEEE Southeastcon, pages 1-6, April 2013.

[9] Y. Fu and P. J. Clarke, “Gamification-based cyber-enabled learning
environment of software testing”, In Proceedings of the 123rd Annual
ASEE Annual Conference and Exposition, June 2016. Paper ID:
15359.

[10] E. Gamma and K. Beck. JUnit, January 2017. [Online]. Available:
http://www.junit.org/ [Accessed Jan. 31, 2018].

[11] L. Gazzola, “Field testing of software applications”, In Proceedings of
the 39th International Conference on Software Engineering
Companion, ICSE-C '17, pages 429-432, Piscataway, NJ, USA, 2017.
IEEE Press.

[12] C. E. Hmelo-Silver and C. Eberbach, “Learning theories and problem-
based learning”, In S. Bridges, C. McGrath, and T. L. Whitehill,
editors, Problem-Based Learning in Clinical Education: The Next
Generation, pages 3,17. Springer Netherlands, Dordrecht, 2012.

[13] N. Harley, “10 of the most costly software errors in history”. May 29,
2014. [Online]. Available: https://raygun.com/blog/10-costly-
software-errors-history/. [Accessed Feb. 5, 2018]

[14] A. P. Mathur, “Foundations of Software Testing”, Addison-Wesley
Professional, 2nd edition, 2013.

[15] R. S. Smith, “Guidelines for authors of learning objects”, The New
Media Consortium, 2004.

[16] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Yongle Zhang,
P. U. Jain, and M. Stumm, “ Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-intensive
systems”, In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI'14, pages 249-
265, Berkeley, CA, USA, 2014. USENIX Association.

[17] Wikipedia, “List of Software Bugs”, [Online], Available:
https://en.wikipedia.org/wiki/List_of_software_bugs [Accessed Jan.
31, 2018]

https://en.wikipedia.org/wiki/List_of_software_bugs

	I. Introduction
	2. Background
	3. Online Learning Systems
	3.2 Simple Content Delivery System (Simple WReSTT)

	4. Software Testing Study
	5. Related Work
	6. Conclusion
	References

