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Abstract 
The objective of the present paper is to illustrate the use of the commercially available mathematical 
package MAPLE® and other computer software for educational purposes.  The problem chosen to 
illustrate the use of the software is the problem of forced vibrations of an elastic plate. The presentation 
of the topic is made in a simple manner to make it suitable for introductory graduate or undergraduate 
structural dynamics or vibration courses.  The paper illustrates many concepts of structural dynamics in a 
step by step structured way: from the mathematical formulation, to the generation of a computer 
animation.  The organization of the material and its computer implementation facilitate the introduction 
of the topic to students without having to resort to black-box type commercial finite element packages 
like ANSYS®, SAP2000®, RISA®, etc.  A very simple finite element (FE) is used to model the plate.  
The simplicity of the FE model used makes it possible to implement the procedure using high-level 
computer languages like those available within MATLAB®, MAPLE®, or even EXCEL®.  The classical 
modal superposition method is used to illustrate the concepts. A standard finite element procedure in 
conjunction with Jacobi’s method is used to solve the eigenvalue problem. A sample numerical problem 
together with snapshots of the computer animation are presented.   
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1. Introduction 
 
The problem of the forced vibrations of an elastic plate involves a variety of concepts of structural 
analysis and structural dynamics. For the analysis of simple, skeletal structures, some knowledge of the 
direct stiffness method may be sufficient. For the analysis of more complex, continuous structures, 
knowledge of the finite element method (FEM) is necessary. As a matter of fact, accurate solutions of the 
plate problem require finite element discretizations using complex plate or shell elements. These 
elements are readily available in commercial black-box type computer codes like ANSYS®, SAP2000®, 
RISA®, etc. One of the disadvantages of using black-box type packages in an instructional setting is that 
students miss many important details of the calculation procedure. As an alternative to the use of 
commercial FE packages, simple FE formulations of the problem like the one presented here provide a 
valuable alternative. The present FE formulation uses two degree-of-freedom finite elements to 
approximate the linear elastic behavior of the plate. This formulation can be easily implemented using 
high-level computer languages like those available within MATLAB ®, MAPLE®, or even EXCEL®. This 
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formulation will probably not be accurate enough for industrial applications. However, it captures all the 
important aspects of the problem from the academic point of view. In addition, because of its simplicity, 
it allows for the generation of a realistic animation of the vibrations of the plate using a readily available 
computer program such as MAPLE®.   
 
Three methods are generally available to perform a numerical simulation of the forced vibrations of an 
elastic plate:  1. modal superposition, 2. frequency domain analysis, and 3. direct numerical integration 
of the differential equation of motion. Method 2. requires knowledge of Fourier transforms and Fourier 
series; it is mathematically more involved than the other two and probably not appropriate for an 
introductory course in vibrations. Method 3. is the method of choice when the modal superposition 
method cannot be used (i.e., when the structure exhibits nonlinear behavior, see e.g.,(Craig, 1981)).  
Method 1. on the other hand, is a method that can be used in many practical situations and that is rich in 
educational and practical content. The present discussion will therefore use method 1., or modal 
superposition. When modal superposition is used, the numerical solution of the problem of the forced 
vibrations of an elastic structure involves the following steps: 1. discretization of the problem using a 
suitable finite element model, 2. formulation of the corresponding eigenvalue problem, 3. solution of the 
eigenvalue problem, 4. determination of the normal equations of motion (uncoupling of the equations of 
motion), 5. calculation of the response to the given excitation for each of the normal coordinates, and 6. 
superposition of the normal response functions to obtain the response of the structure. The remaining of 
this paper describes the foregoing steps in some detail. A more complete account of the entire process 
can be found in (Orozco, 2005).  
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Figure 1. General, time-dependent load for a plate.   
 
2. Mathematical Description of the Problem 
 
Figure 1 shows a plan view of a rectangular plate together with a general, time dependent, transverse (i.e., 
perpendicular to the plane of the plate) load q(x,y,t). The simplest problem that can be defined for this 
plate consists of finding the vertical deflection or displacement field u(x,y,t). In the context of dynamics, 
this is referred to as the “response” of the system.  In a rigorous mathematical context, this problem is a 
continuum problem. In other words, it has an infinite number of degrees of freedom (DOF). Its exact 
analytical solution requires the use of partial differential equations and Fourier series approximations. 
Even the static problem (i.e., one in which the time coordinate t has been removed from the equations), 
requires the use of partial differential equations.  A much more practical approach to the solution of this 
problem, consists of using a numerical approximation procedure like the finite element method (FEM). 
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An accurate model of the plate problem using the FEM requires the use of complex elements with many 
degrees of freedom.  These elements are available in commercial FE packages. A much simpler finite 
element model was adopted here for the sake of educational clarity.  Figure 2 illustrates schematically this  
FE model.  It shows schematically the plate modeled as a grid of beam elements with two degrees of 
freedom.  
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Figure 2.  Two degree-of-freedom finite elements to approximately model the plate.  
 
 
3. A Simplified Finite Element Model for a Plate 
 
The finite element model illustrated in Figure 2 uses a 2-DOF finite element that leads to the following 
elemental stiffness matrix: 
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A global stiffness matrix K  for the entire plate structure can now be assembled using the standard steps of 
the direct stiffness method (see e.g., (Chandrupatla and Belegundu, 1997)).  For the case of a static load, 
the global equilibrium equations of the structure can be formally written as: 
 
                                                                             K u = P                                                                  (2) 
  
where u is the displacement vector, and P, the load vector.  For the case of the plate, the displacement 
vector will contain the vertical displacements of the plate at the nodal points (see Figure 2). The simplest 
way to account for a distributed load like that shown in Figure 1 will be to add the contributions of four 
adjoining tributary areas and assign them to the node at the center of the areas as a nodal load.  This 
procedure is referred to as the lump load method. The load vector will then contain these nodal loads. 
Once the plate is discretized in this way, its dynamical behavior can be mathematically described with the 
help of a Multi-Degree-Of-Freedom (MDOF) system like that shown in Figure 3b.             



  
Page 4 of 10 

                                    

1 1p (t), u (t)

22p (t), u (t)

33p (t), u (t)

4 4p (t), u (t)

m1

m 2

m3

m 4

k
p(t)

mc

 

            Figure 3. a) SDOF System. b) MDOF System.  

 
4. Dynamics of Multi-Degree-Of-Freedom (MDOF) Systems 
 
Figure 3 illustrates a single degree of freedom (SDOF) dynamical system together with a one dimensional 
multi-degree-of-freedom system.  A simple application of D’Alambert’s Principle to the SDOF system 
leads to the well know dynamic equilibrium equation: 
 
                                                        )()()()( tptkutuctum =++ &&&                                                            (3)    
  
where m is the mass of the system, k the spring constant, c the damping constant, u(t) the displacement in 
the horizontal direction, and p(t) the applied load. For the MDOF system (Figure 3b), the dynamic 
equilibrium equation looks formally the same as Equation (3): 
 
                                                       M ü( t) + C ů(t) + K u(t) = p(t)                                               (4) 
 
The difference is of course that in Equation (4), M , C, and K  are matrices, and u and p are vectors. 
Notice also that u and p are functions of time. To solve Equation (4), it is convenient to first consider the 
problem of free vibrations of an undamped system, i.e., one in which C and  p are zero. Equation (4) 
then becomes:        
 
                                                               M ü(t) + K u(t) = 0                                                            (5) 
 
If a simple harmonic solution u(t) = u0 sin (ωt + θ) for (5) is assumed, the following eigenvalue 
problem is obtained: 
                                                                     Eu0 = ω2 u0                                                                                                                      (6) 
  
where E ≡ M -1 K is the inverse of the so-called dynamic matrix (see e.g., (Clough and Penzien, 1975)).  If 
n is the number of degrees of freedom of the system (i.e., the number of nodes in the plate model shown 
in Figure 2), there are n eigenvalues ωi and n eigenvectors φi that constitute the solution of (6).  The n 
eigenvalues ωi are referred to as the natural frequencies of the system. The n eigenvectors φi are known as 
the modes of vibration (or modal shapes) of the system. The smallest  frequency of the system is referred 
to as the fundamental frequency of the system. The smallest frequency corresponds to the largest period  
 
 
of vibration. If the frequencies are ordered in ascending order, the fundamental frequency corresponds to 
ω1 and the fundamental period to T1. These frequency and period are related by:  
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An important characteristic of the modes of vibration of a dynamical system is that they are orthogonal to 
each other with respect of the mass M  and stiffness K  matrices (see, e.g., Bathe, 1996). Another 
important property of the modes of vibration of a dynamical system is that they constitute a basis for the 
n-dimensional space (see, e.g., Bathe, 1996).  This property can be used to advantage to solve Equation 
(4). For this purpose, let u(t) be the solution of (4).  Then u(t) can be written as a linear combination of 
the n modal shapes φi as follows: 
 
                                                                  u(t) = Ф y(t)                                                                           (8) 
 
where Ф is a matrix whose columns are the modes of vibration φi. When Equation (8) is substituted into 
(4), and use is made of the orthogonality properties, a scalar equation for each mode of vibration i is 
obtained as follows:  
 

                                                     )()()()( **** tptyktyctym iiiiiii =++ &&&                                                  (9)   

where, 

                                                                    *
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The quantities in Equations (10) to (13) are known as the generalized mass, generalized damping 
constant, generalized stiffness, and generalized load of the structure respectively. 
 
Equation (8) can also be written in a more convenient form as: 
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is the damping ratio, and  

                                                                        
*

*

i

i
i m

k≡ω                                                                      (16) 

 
is the circular frequency corresponding to mode i.   
 
The foregoing process shows that Equation (4) can be transformed into a system of n equations, one for 
each mode of vibration (Equation (9)). This means that the modes of vibration effectively uncouple the 
dynamic equations of motion. In other words, to solve a MDOF dynamics problem, it suffices to solve n 
separate (uncoupled) differential equations of the form (9) as opposed to having to solve a system of 
coupled differential equations (Equation (4)).  This is the advantage of using the method of modal 
superposition to solve dynamic problems.  
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Figure 4.  a) Impulse load. b) General dynamic load.  
 
4. Dynamic Response to an Impulsive Load 
 
One of the most common loads in structural systems is an impulsive load, i.e., a load that has a short 
duration with respect to the fundamental period of the structure (i.e., td << T). A schematic plot of such 
load is shown in Figure 4a. The impulse of this load is by definition: 
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It can be shown that the response of a SDOF system to this impulse load is given by: 
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where,  

                                                                21 ξωω −≡d                                                                      (19) 

 
is the damped frequency of the system (see, e.g., (Clough and Penzien, 1975)). 
 
In the case of a MDOF system, there will be one equation like (18) for each uncoupled degree of freedom 
i, i.e., 
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Following the definition of the generalized force for mode i given by (13), and the definition of impulse 
given in (17), the impulse for mode of vibration i, is given by: 
 

                                                                   ∫=
dt

iI
0

φi
T p(t)  dt                                                              (21) 

5. Computational Aspects. 
 
The FE program used in the present study is a research FE code written in FORTRAN. The input to the 
FE program consists of the geometry of the structure, the element properties, the element connectivity, 
and the boundary conditions (including loads). It also includes the data necessary to perform a dynamical 
analysis, i.e., the individual element masses.  Damping is introduced into the system by means of 
individual damping ratios for each mode (see Equations (14) and (15)).  The direct stiffness method of 
analysis is used to assemble the stiffness and mass matrices.  The eigenvalue problem given by (6) is 
solved by means of Jacobi’s method (Press et al, 1992).  
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5.1 Response Calculations 
 
The output of the FE program consists of the modes of vibration of the plate and the corresponding modal 
frequencies.  These data constitute the input to a “response” program. The “response” program uses the 
modal superposition method to generate a discrete version of the response function u(x,y,t) mentioned in 
Section 2. above. The main component of the process is Equation (20) which gives the response of a 
SDOF system to an impulsive load. In the context of a MDOF system, each response function yi(t) is also 
the coefficient of φi in Equation (8). The process of generating the response of the structure is carried out 
in an incremental fashion using time steps. A suitable interval of time ∆t is first chosen, the response 
calculated for time t, then for time t+ ∆t, and so on. The first step is to calculate the impulse I i 
corresponding to each mode of vibration. This is done using Equation (21). The calculations performed 
by the response code can be arranged in the form of an algorithm as follows: 1. set the problem 
parameters and initialize variables:  set the duration of the impact (impulse) load to a small number, say 

1000
1T

td = ; set the damping coefficient ξi (say ξi = 2 %); choose the time interval ∆t and set the initial 

time to zero:  ∆t =
IntervalsTimeofNumber

SimulationofDuration

___

__
; t=0. 2. Increment t: t = t +  ∆t. 3. For all x and y 

coordinates set frame(x,y) = 0.0.  4. Do For  i=1 to nmodes; calculate *
im according to Equation (10) 

and ωdi according to Equation (19); calculate I i = P0 * td * φ(xp,yp,i). Calculate yi according to Equation 
(20). Superimpose mode contributions into the array frame:            frame(x,y)=frame(x,y)+yi*φ(x,y,i). 
Write frame(x,y). Enddo. 5. If t ≤ Duration_of_Simulation then goto 2, otherwise STOP. In this 
algorithm, nmodes refers to the number of modes considered for the simulation, which in general does 
not have to be equal to n. P0 is the intensity of the applied load. The coordinates xp and yp refer to the 
point of application of the impact load. This position can be changed within the program “response”. As 
shown in step 4. above, the “response” program outputs the animation frames to a file called 
“maplemodes.dat”. The format of this file must be such that it can be understood by MAPLE®.  This is 
accomplished by formatting this file according to the internal representational structure that MAPLE® 
uses for its plot3d function (this data structure will be displayed by MAPLE® when the command 
“?plot3d[structure];” is typed in the command line). The plot3d function is one of the functions that 
MAPLE® uses to produce animations. This function is used when the values of the surface to be animated 
(in this case the deflected shape of the plate) are specified by the user. Following this structure, the first  
line of the “maplemodes.dat” should read something like: animation:= PLOT3D(GRID(0.0..1.0, 
0.0..1.0 [0.0,…,0.0], [0.0, -3.9,…,-3.9, 0.0], …The “maplemodes.dat” file is read by MAPLE® by 
means of the command ‘read “maplemodes.dat”;’. Once the file is read, the actual animation can be 
generated and displayed by simply typing ‘animation;’ in the command line.  
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    Figure 5. Plate dimensions and data for example problem.                                                  
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6. Sample Results.  
 
The data for the sample problem presented here is shown in Figure 5. The plate was discretized using 
840 elements and 441 nodes. The lumped mass mi at each node corresponds to the mass of a 0.6 m × 0.6 
m (× 0.4 m) square (parallelepiped) that is centered at node i as indicated in Figure 5. For the results 
presented here, the impact load was applied at the center node of the plate. Note that as far as the 
smulation is concerned, the actual value of the load is immaterial since the deflection of the plate needs  
to be exaggerated (scaled) for purposes of graphical representation. The time increment used was ∆t =10-4 
seconds. Figure 6 illustrates a sequence of four frames obtained from the animation produced by 
MAPLE®. The number of modes considered for the modal superposition in the animation presented here 
was 100 (out of a maximum of 441 for the current discretization of the plate).  Figure 7 shows modes of 
vibration 1, 4, 12, and 55. These modes were also obtained using the program “response”.  The speed of 
the computer simulation can be adjusted at will. However, it should be noted that the actual duration of 
the vibration phenomenon is very short. For instance, the interval of time that separates frames 5 and 12 
in Figure 6 is actually 7∆t or 7×10-4 seconds. 

                                       

                   
 
 
 
     Figure 6. Clockwise From Top to Bottom: Frames 1, 5, 12, and 18 of computer animation. 
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               Figure 7.   Clockwise From Top to Bottom: Modes of Vibration 1, 4, 12, and 55. 
 
7. Concluding Remarks. 
 
A simple formulation of the problem of forced vibrations of an elastic plate has been presented together 
with sample results and snapshots of a computer animation. The plate is discretized using a simple finite 
element. The eigenvalue problem resulting from the finite element analysis is solved using Jacobi’s 
method. The response of the plate is determined using the modal superposition method.  The simplicity of 
the finite element model used allows for a computer implementation of the problem that permits the 
generation of an animation of the vibrations of the plate using MAPLE®. The problem is presented in a 
detailed yet modular way so that it can be easily incorporated into lecture material for introductory 
graduate or undergraduate courses in structural dynamics or vibrations. The presentation offers an 
alternative to the use of black-box commercial computer codes to study the topic of forced vibrations of 
elastic structures in a classroom environment.  
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