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Abstract

The objective of the present paper is to illustitiie use of the commercially available mathematical
package MAPLE and other computer software for educational purpos@he problem chosen to
illustrate the use of the software is the probldrfocced vibrations of an elastic plate. The présgon

of the topic is made in a simple manner to malauitable for introductory graduate or undergraduate
structural dynamics or vibration courses. The pdhestrates many concepts of structural dynanmica
step by step structured way: from the mathematioahulation, to the generation of a computer
animation. The organization of the material asoctmputer implementation facilitate the introdoati

of the topic to students without having to resorbtack-box type commercial finite element packages
like ANSYS®, SAP2000, RISA®, etc. A very simple finite element (FE) is usedmodel the plate.
The simplicity of the FE model used makes it pdsstb implement the procedure using high-level
computer languages like those available within MAB®, MAPLE®, or even EXCEE. The classical
modal superposition method is used to illustrate ¢bncepts. A standard finite element procedure in
conjunction with Jacobi’'s method is used to sohe e¢igenvalue problem. A sample numerical problem
together with snapshots of the computer animatierpeesented.
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1. Introduction

The problem of the forced vibrations of an elagtiate involves a variety of concepts of structural
analysis and structural dynamics. For the analysEmple, skeletal structures, some knowledgehef t
direct stiffness method may be sufficient. For #mlysis of more complex, continuous structures,
knowledge of the finite element method (FEM) ises=ary. As a matter of fact, accurate solutiorthef
plate problem require finite element discretizagiomsing complex plate or shell elements. These
elements are readily available in commercial blbok-type computer codes like ANSY,SSAP2008,
RISA®, etc. One of the disadvantages of using blacktpp& packages in an instructional setting is that
students miss many important details of the calmraprocedure. As an alternative to the use of
commercial FE packages, simple FE formulationsheffiroblem like the one presented here provide a
valuable alternative. The present FE formulatioresuswo degree-of-freedom finite elements to
approximate the linear elastic behavior of theeldtis formulation can be easily implemented using
high-level computer languages like those availabtein MATLAB ©, MAPLE®, or even EXCEE. This
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formulation will probably not be accurate enoughifalustrial applications. However, it capturestaé
important aspects of the problem from the academiict of view. In addition, because of its simghci
it allows for the generation of a realistic aniroatof the vibrations of the plate using a readitgikable
computer program such as MAPLE

Three methods are generally available to performuraerical simulation of the forced vibrations of an
elastic plate: 1. modal superposition, 2. freqyethemain analysis, and 3. direct numerical intégrat

of the differential equation of motion. Method 2quires knowledge of Fourier transforms and Fourier
series; it is mathematically more involved than titber two and probably not appropriate for an
introductory course in vibrations. Method 3. is timethod of choice when the modal superposition
method cannot be used (i.e., when the structurébigsxmonlinear behavior, see e.g.,(Craig, 1981)).
Method 1. on the other hand, is a method that eansled in many practical situations and that Is inc
educational and practical content. The presentudson will therefore use method 1., or modal
superposition. When modal superposition is used nimerical solution of the problem of the forced
vibrations of an elastic structure involves thddwing steps: 1. discretization of the problem gsin
suitable finite element model, 2. formulation oé ttorresponding eigenvalue problem, 3. solutiothef
eigenvalue problem, 4. determination of the noretplations of motion (uncoupling of the equations of
motion), 5. calculation of the response to the giggcitation for each of the normal coordinates] &n
superposition of the normal response functionsbtaio the response of the structure. The remaiafng
this paper describes the foregoing steps in sortal.d& more complete account of the entire process
can be found in (Orozco, 2005).
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Figure 1. General, time-dependent load for a plate.

2. Mathematical Description of the Problem

Figure 1 shows a plan view of a rectangular plagether with a general, time dependent, transveese
perpendicular to the plane of the plate) logx,y,t). The simplest problem that can be defined for this
plate consists of finding the vertical deflectiondisplacement fieldi(x,y,t).In the context of dynamics,
this is referred to as the “response” of the systéma rigorous mathematical context, this probism
continuum problem. In other words, it has an inéimumber of degrees of freedom (DOF). Its exact
analytical solution requires the use of partialetiéntial equations and Fourier series approximatio

Even the static problem (i.e., one in which theetiomordinatd has been removed from the equations),
requires the use of partial differential equatio®smuch more practical approach to the solutionhif
problem, consists of using a numerical approxinmapoocedure like the finite element method (FEM).
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An accurate model of the plate problem using thMFequires the use of complex elements with many
degrees of freedom. These elements are availabternmercial FE packages. A much simpler finite
element model was adopted here for the sake ofatidual clarity. Figure 2 illustrates schematigahiis

FE model. It shows schematically the plate modeled grid of beam elements with two degrees of
freedom.
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Figure 2. Two degree-of-freedom finite elements tapproximately model the plate

3. A Simplified Finite Element Model for a Plate

The finite element model illustrated in Figure 2sis 2-DOF finite element that leads to the foltayvi
elemental stiffness matrix:

12E1  12El

3 3

-| L L
Ke _12E1 12E @

38

A global stiffness matriX for the entire plate structure can now be assamniséeng the standard steps of
the direct stiffness method (see e.g., (Chandragattl Belegundu, 1997)). For the case of a dtst,
the global equilibrium equations of the structuae be formally written as:

Ku=P )

whereu is the displacement vector, aRy the load vector. For the case of the plate displacement
vector will contain the vertical displacements loé plate at the nodal points (see Figure 2). Timplsist
way to account for a distributed load like thatwhdn Figure 1 will be to add the contributionsfotir
adjoining tributary areas and assign them to thdenat the center of the areas as a nodal loads Thi
procedure is referred to as thenp load method. The load vector will then containsth@odal loads.
Once the plate is discretized in this way, its dyital behavior can be mathematically described thieh
help of a Multi-Degree-Of-Freedom (MDOF) systenelthat shown in Figure 3b.
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Figure 3. a) SDOF System. b) MDOF Syste

4. Dynamics of Multi-Degree-Of-Freedom (MDOF) Systas

Figure 3 illustrates a single degree of freedom@EPdynamical system together with a one dimensiona
multi-degree-of-freedom system. A simple applwatdf D’Alambert’s Principle to the SDOF system
leads to the well know dynamic equilibrium equation

mui(t) + cu(t) + ku(t) = p(t) 3)

wheremis the mass of the systekithe spring constant,the damping constart(t) the displacement in
the horizontal direction, anp(t) the applied load. For the MDOF system (Figure 3bg dynamic
equilibrium equation looks formally the same as &un (3):

M U(t) + Ca(t) + K u(t) = p(t) (4)

The difference is of course that in Equation (), C, andK are matrices, and andp are vectors.
Notice also thatl andp are functions of time. To solve Equation (4), it@venient to first consider the
problem of free vibrations of an undamped systee, one in whickC and p are zeroEquation (4)
then becomes:

M€ + Ku(t)=0 (5)

If a simple harmonic solution(t) = up sin (@t + 6) for (5) is assumed, the following eigenvalue
problem is obtained:
Eup= (,02 Uo (6)

whereE = M™ K is the inverse of the so-callégnamic matriXsee e.g., (Clough and Penzien, 1975)). If
n is the number of degrees of freedom of the sygtem the number of nodes in the plate model shown
in Figure 2), there are eigenvalueso; andn eigenvectorsp; that constitute the solution of (6). The
eigenvalues; are referred to as the natural frequencies o$yiseem. Then eigenvectorg; are known as
the modes of vibration (or modal shapes) of théesysThe smallest frequency of the system is redfier
to as thdundamentafrequency of the system. The smallest frequencgesponds to the largest period

of vibration. If the frequencies are ordered inemgting order, the fundamental frequency corresptmds
®; and the fundamental periodTe These frequency and period are related by:
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Ti=— (7)

An important characteristic of the modes of vilmatof a dynamical system is that they are orthogtmna
each other with respect of the mads and stiffnessKk matrices (see, e.g., Bathe, 1996). Another
important property of the modes of vibration ofymamical system is that they constitute a basigHer
n-dimensional space (see, e.g., Bathe, 1996). froigerty can be used to advantage to solve Equation
(4). For this purpose, let(t) be the solution of (4). Them(t) can be written as a linear combination of
then modal shapeg; as follows:

u(®) =@ y() (8)

where® is a matrix whose columns are the modes of vibnagi. When Equation (8) is substituted into
(4), and use is made of the orthogonality propgrtée scalar equation for each mode of vibratios
obtained as follows:

m ¥, (1) +c v (1) + Ky (1) = p (1) ) (9
where,
m* =¢i' M o (10)
Ci* =¢;' Co (11)
ki* =¢;' K ¢ (1p
b ()= p(t) (13)

The quantities in Equations (10) to (13) are knoas thegeneralizedmass generalizeddamping
constanigeneralizedstiffness andgeneralized loaaf the structure respectively.

Equation (8) can also be written in a more convarfierm as:

. . " (t
5,0+ 26y, +afy, 0 = 2L (14
where,
c
= ! 15
$; ma (15)
is the damping ratio, and
q= 5 (16)
m

is the circular frequency corresponding to made

The foregoing process shows that Equation (4) @atransformed into a system mfequations, one for
each mode of vibration (Equation (9)). This medrat the modes of vibration effectivelyncouplethe
dynamic equations of motion. In other words, toved MDOF dynamics problem, it suffices to sotve
separate (uncoupled) differential equations of fren (9) as opposed to having to solve a system of
coupled differential equations (Equation (4)). lé the advantage of using the method of modal
superposition to solve dynamic problems.
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Figure 4. a) Impulse load. b) General dynamic load
4. Dynamic Response to an Impulsive Load
One of the most common loads in structural systinan impulsive load, i.e., a load that has a short

duration with respect to the fundamental periodhef structure (i.ety << T). A schematic plot of such
load is shown in Figure 4a. Timapulseof this load is by definition:

| = j p(t)dt (17)

0

It can be shown that the response of a SDOF systehis impulse load is given by:

e “ sinyt (18)

y(t) =
Mma

W = wy1-&° (19)

is thedampedrequency of the system (see, e.g., (Clough amdiPe, 1975)).

where,

In the case of a MDOF system, there will be onea&qu like (18) for each uncoupled degree of fremdo
i, i.e.,

yi(t) = i e sinat (20)
di

Following the definition of the generalized foraa fnodei given by (13), and the definition of impulse
given in (17), the impulse for mode of vibratiipris given by:

ty
L= e p) at (21)
0
5. Computational Aspects.

The FE program used in the present study is ang@sé& code written in FORTRAN. The input to the
FE program consists of the geometry of the stracttire element properties, the element connectivity
and the boundary conditions (including loads)ldbancludes the data necessary to perform a dysami
analysis, i.e., the individual element masses. @agis introduced into the system by means of
individual damping ratios for each mode (see Egmati(14) and (15)). The direct stiffness method of
analysis is used to assemble the stiffness and matsces. The eigenvalue problem given by (6) is
solved by means of Jacobi’s method (Press et 8R)19
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5.1 Response Calculations

The output of the FE program consists of the madegbration of the plate and the corresponding atod
frequencies. These data constitute the input‘t@sponse” program. The “response” program uses the
modal superposition method to generate a discergion of the response functiolfx,y,tymentioned in
Section 2. above. The main component of the prose&xjuation (20) which gives the response of a
SDOF system to an impulsive load. In the contexd MDOF system, each response functigt) is also
the coefficient ofp; in Equation (8). The process of generating theaese of the structure is carried out
in an incremental fashion using time steps. A &latanterval of time4t is first chosen, the response
calculated for timet, then for timet+ At, and so on. The first step is to calculate the uilsgl;
corresponding to each mode of vibration. This isedasing Equation (21). The calculations performed
by the response code can be arranged in the forrmnoélgorithm as follows: 1. set the problem
parameters and initialize variables: set the daumatf the impact (impulse) load to a small numlszay

ty 2%; set the damping coefficiefit (say& = 2 %); choose the time interval and set the initial

. Duration__of _ Simulation
time to zero: At = == ; t=0. 2. Increment: t =t + 4t. 3. For allx andy

Number_of _Time_Intervals

coordinates sdrame(x,y) = 0.0 4.Do For i=1 to nmodes; calculatenf according to Equation (10)

andwg; according to Equation (19); calculdte= Py * tg * ¢(X,,Ypi). Calculatey; according to Equation
(20). Superimpose mode contributions into the afragne: frame(x,y)=frame(X,y)+§ o (X,y,).
Write frame(x,y) Enddo. 5. If t < Duration_of_Simulationthen goto 2, otherwiseSTOP. In this
algorithm,nmodes refers to the number of modes considered for itlnelation, which in general does
not have to be equal t@ P, is the intensity of the applied load. The coordisad, andy, refer to the
point of application of the impact load. This p@sitcan be changed within the program “responss”. A
shown in step 4. above, the “response” program utsitghe animation frames to a file called
“maplemodes.dat”. The format of this file must be such that it ¢enunderstood by MAPLE This is
accomplished by formatting this file according ke tinternal representational structure that MAPLE
uses for itsplot3d function (this data structure will be displayed MAPLE® when the command
“?plot3d[structure];” is typed in the command line). Tipdot3d function is one of the functions that
MAPLE® uses to produce animations. This function is wsleen the values of the surface to be animated
(in this case the deflected shape of the platespeeified by the user. Following this structufes first

line of the “maplemodes.dat” should read something likeainimation:= PLOT3D(GRID(0.0..1.0,
0.0..1.0 [0.0,...,0.0], [0.0, -3.9,...,-3.9, 0.0], ...The “maplemodes.dat” file is read by MAPLE by
means of the commandead “maplemodes.dat”;’. Once the file is read, the actual animation can be
generated and displayed by simply typiagimation;’ in the command line.
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Figure 5. Plate dimensions and data for examplaroblem.
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6. Sample Results.

The data for the sample problem presented hereowrsin Figure 5. The plate was discretized using
840 elements and 441 nodes. The lumped maas each node corresponds to the mass of a 0.®.1 x

m (x 0.4 m) square (parallelepiped) that is cedterenode as indicated in Figure 5. For the results
presented here, the impact load was applied aceéinéer node of the plate. Note that as far as the
smulation is concerned, the actual value of thd lsdammaterial since the deflection of the plateds

to be exaggerated (scaled) for purposes of grajptepeesentation. The time increment used stas10™
seconds. Figure 6 illustrates a sequence of foamds obtained from the animation produced by
MAPLE®. The number of modes considered for the modalrgagéion in the animation presented here
was 100 (out of a maximum of 441 for the currestrditization of the plate). Figure 7 shows modes o
vibration 1, 4, 12, and 55. These modes were disaired using the program “response”. The speed of
the computer simulation can be adjusted at willweleer, it should be noted that the actual duratibn
the vibration phenomenon is very short. For instariee interval of time that separates frames 5land
in Figure 6 is actually4t or 7x10* seconds.
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Figure 6. Clockwise From Top to Bottom: Frameq, 5, 12, and 18 of computer animation.
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Figure 7. Clockwise From Top to Bottom: Modes o¥ibration 1, 4, 12, and 55.

7. Concluding Remarks.

A simple formulation of the problem of forced vilicms of an elastic plate has been presented tegeth
with sample results and snapshots of a computenaitn. The plate is discretized using a simpléein
element. The eigenvalue problem resulting from fihée element analysis is solved using Jacobi’s
method. The response of the plate is determinedyuke modal superposition method. The simplicity
the finite element model used allows for a compungslementation of the problem that permits the
generation of an animation of the vibrations of piete using MAPLE. The problem is presented in a
detailed yet modular way so that it can be easitoiporated into lecture material for introductory
graduate or undergraduate courses in structuraardigs or vibrations. The presentation offers an
alternative to the use of black-box commercial cotapcodes to study the topic of forced vibratiofis
elastic structures in a classroom environment.

Page 9 of 10



References

[1] Orozco, C. E* Simulating the Forced Vibrations of an Elastic @latsing a Simple Finite Element
and Mapl&” . Computers in Education Journalol. 15, No. 1, 2005

[2] Craig R. R.“Structural Dynamics: An Introduction to Computerethods” Wiley & Sons, New
York, 1981, Ch. 18.

[3] Chandrupatla, T. R. and Belegundu, A.“Dtroduction to Finite Elements in EngineeringSecond
Edition. Prentice Hall, Upper Saddle River, Newsdgr 1997, Ch. 8.

[4] Clough R. W. and Penzien“Dynamics of Structures”"McGraw-Hill, New York, 1975.
[5] Bathe K-J “Finite Element ProceduresPrentice Hall, Englewood Cliffs, 1996, Ch. 11.

[6] Press W. H., Teukolsky S. A., Vetterling W. T., anBlannery B. P. Numerical Recipes in
FORTRAN" Second Edition, Cambridge University Press, Caagler 1992. p. 460.

[7] Press W. H., Teukolsky S. A., Vetterling W. T., afidannery B. P. Numerical Recipes Example
Book ( FORTRAN)’Second Edition, Cambridge University Press, Caafgler 1992. Ch. 11
Authorization and Disclaimer

Authors authorize LACCEI to publish the papershia tonference proceedings. Neither LACCEI nor the
editors are responsible either for the contenbottfe implications of what is expressed in thegoap

Page 10 of 10



