Fourth LACCEI International Latin American and Clalsean Conference for Engineering and TechnologyC(CET'2006)
“Breaking Frontiers and Barriers in Engineering: Hdation, Research and Practice”
21-23 June 2006, Mayagtiiez, Puerto Rico.

Design Progression With VHDL Helps Accelerate The Digital System Designs

Jaime Marcelo Montenegro, Eng. Ph.D. Candidate
VLSI Lab Manager, Florida International Universiliami, Florida, USA, montenegro@ieee.org

Dr. Subbarao Wunnava, Ph.D., P.E.
Professor of Electrical & Computer Engineering,rfda International University, Miami, Florida, USA,
subbarao@fiu.edu

Abstract

Integrated Circuit technology (IC) is the enablirghnology for a whole host of innovative deviced a
systems that have changed the way we live. Intedr@trcuits are much smaller and consume less power
than the discrete components used to build electmystems before the 1960s. Integrated circuits ar
also easier to design and manufacture and are madigble than discrete systems. The growing
sophistication of applications continually pushies tlesign and manufacturing of integrated circantd
electronic systems to new levels of complexity. Duenajor advances in the development of electeonic
and miniaturization, vendors are capable of bugdamd designing products with increasingly greater
functionality, higher performance, lower cost, lowmwer consumption, and smaller dimensions [1].
However, the bottleneck for some vendors appeabetthe ability of designers to target the necgssar
increase in the complexity of electronic devicagtiiermore, the electronics industry requires systo

be capable of in-site reprogramming, where the agligg task depends more on software than on
hardware. This situation has fostered the neeavidespread adoption of modern technologies in desig
and testing. Of the several existing methodolodigsh-density Programmable Logic Devices (PLDs) as
well as the Very High Speed Integrated Circuits 8f€) Hardware Description Language (VHDL) are
key elements in the evolution of electronic deviddse authors have studied the field of programmabl
logic and deployed its capabilities. It was dematstl how the utilization of VHDL benefits not only
engineering applications, but also plays an impdntale accelerating the design of digital systems.

Keywords
Very-large-scale integration, VHDL, Verilog.

1. Introduction

Higher density Programmable Logic Devices, inclgditComplex PLDs (CPLDs) and Field
Programmable Gate Arrays (FPGASs), are microcomrelthat can be used to integrate large amounts of
logic in a single IC. Semi custom and full-customphcation Specific Integrated Circuit (ASIC) desg

are also used for integrating large amounts oftalidogic, but CPLDs and FPGAs provide additional
flexibility; they can be used with tighter schedyléor low volume products, and for first productiauns
even with high volume products [2]. Devices suclC&®.Ds and FPGAs were developed to follow the
criteria that in order to upgrade or improve thefgrenance and capabilities of an electronic systemty

the devices themselves should be reprogrammednegithinstructions and parameters to fulfill the new

demands of that system. With that in mind, thetedeics market has a major tool for the developnaoént
the next generation of electronic devices. By usi@ge microcontrollers, the issue of achievingjade
scalability, proper upgrade, and stability of ategs became a reality. However to efficiently progra
these logic devices, there was a need for powerfuhputer languages. A Hardware Description
Language such as VHDL is particularly well suited designing with programmable logic devices.

This article is organized as follows: Section 2 wikesent a brief overview of VHDL and its capais.
Section 3 will discuss the implementation of selvgttdDL logic modules on CPLDs, their simulations,
and how they can be upgraded. Section 4 will ptefenconclusions based on the results obtained and
further recommendations.

2. VHDL Overview

The goal of using the current generation of geraughose computers to help design the next geoerati
of special and general-purpose computers requiregjibg the worlds of hardware and software back
together again [2]. The concept of the HardwarecBetion Language (HDL) was born from this union.
Vendors were looking for a computer language taudmmt electronic systems with the aim to support
the state of the art in silicon-based technologyeyl wanted the design descriptions to be computer
readable and executable. This was followed by thmwah of Very High Speed Integrated Circuits
(VHSIC) Hardware Description Language (VHDL) [3].

VHDL is a hardware description language that camuded to model a digital system at many levels of
abstraction, ranging from the algorithmic levethe gate level [4]. The complexity of the digitgktem
being modeled could vary from that of a simple data complete digital electronic system, or amyghi

in between. The digital system can also be destriierarchically. Timing can also be explicitly
modeled in the same description.

The VHDL language can also be described as a catibmof languages as shown in Figure 1:

SEQUENTIAL LANGUAGE
CONCURRENT LANGUAGE
Z NETLIST LANGUAGE =VHDL
TIMING SPECIFICAT IONS
WAVEFORM GENERATION LANGUAGE

Figure1: VHDL asan Integration of Languages

Therefore, the language has constructs that erthbleuser to express the concurrent or sequential
behavior of a digital system with or without timirig]. It also allows the modeling of systems as an

interconnection of components. Test waveforms ¢sm lae generated using the same constructs. All the
above constructs may also be combined to provicEngrehensive description of the system in a single
model.

The language not only defines the syntax but alstinés very clear simulation semantics for each
language construct. Therefore, models written is ldnguage can be verified using a VHDL simulator
[4]. The complete language has sufficient powerdpture the descriptions of the most complex ctops
a complete electronic system. VHDL is used to dbsca model for a digital hardware device. This
model specifies the external view of the device and or more external views. The internal viewhaf t
device specifies the functionality or structurejle/the external view specifies the interface @& tlevice
through which it communicates with the other modelgs environment. When writing VHDL code, it is
necessary to emphasize that the user is desigaimgafdware. The descriptions in VHDL code will be

synthesized into digital logic for a programmabdgit device. The basic building blocks of VHDL
design are thentity declarationand thearchitecture body2]. The entity and architecture pairs can be
used as complete design descriptions, or as comfmimea hierarchical design.

An entity declaration describes the design inpuplou (I/0O) that may include parameters used to
customize an entity. The entity declaration is agalis to a schematic symbol, which describes a
component’s connections to the rest of the dedige. entity declaration specifies a name by whiah th
entity can be referenced in a design’s architectérgraphical schematic for a 4-bit wide 4 to 1litog
multiplexer is depicted in Figure 2.

MUX
a[3:0] [>———+ 00 __ x[3:01

b[3:0] > o1
c[3:0] [>——+10
d[3:0] - — T

s(1)

s(0)
>

Figure 2: Block diagram of MUX

The multiplexer has a name (MUX), four 4-bit inp(ais b, ¢, d), one 2-bit selection line (s), and drbit
output (x). The following listing describes the igntleclaration in VHDL.

entity MUX is port (
a, b,c,d: instd _logic_vector(3 downjp O

s: in std_logic_vector(1 dow®;
X: out std_logic_vector(3 dow;
end MUX;

Listing 1: A 4to 1 Multiplexer Entity

An architecture body describes the function anders of a design entity. Every architecture baly i
associated with an entity declaration. If the gnti¢claration is viewed as a “black box,” for whiitte
inputs and outputs are known but the details oftughmside the box are not, then the architechady is
the internal view of the black box [4]. VHDL allowilse user to write the designs using various stgfes
architecture. An architecture can contain any coiton ofbehavioral structural or dataflow styles to
define an entity’s function. These styles allow yowescribe a design at different levels of alotia,
from using algorithms to gate level primitives. titig 2 contains the architecture body that defities
behavior of multiplexer MUX.

architecture archmux of mux is
begin
with s select
X <= a when “00",
b when “01”,
¢ when “10”,
d when others;

end archmux;

Listing 2: Architectureof a4to 1 Multiplexer

Based on the value of signs| signalx is assigned one of four possible valuas If, c,or d). This
construct enables a concise description of the 4 tmultiplexer. Three values o are explicitly
enumerated (“00”, “01”, and “10”). The reserved @athersis used to indicate the remaining possible
values fors. That is,othersis specified instead of “11".

3. VHDL Logic Modules

This section will deal with the implementation ofa logic devices employing VHDL. A 4 to 1
multiplexer, and an 8-bit counter will be descrilzadl simulated.

The entity declaration and architecture body dbesdiin Listings 1 and 2 respectively define the
complete VHDL implementation of a 4 to 1 multiplex&isting 3 shows the entire VHDL code that
describes the logic component.

library ieee;

use ieee.std_logic_1164.all;

entity mux is port (

a, b, c, d: in std_logic_vector(3 downty O

CH in std_logic_vector(1 dowrd;
X: out std_logic_vector(3 downd;
end mux;

architecture archmux of mux is

begin

with s select
X <= a when “00",
b when “017,
¢ when “107,
d when others;
end archmux;

Listing3: A 4to1VHDL Multiplexer

Figure 3 illustrates the simulation of the multime (between 200ns to 500ns); whard, ¢ andd are
the data inputssis the selection line, andis the output.

(- Active-HDL Sim [mux] - Waveform2 *

File Seach View Design Simulation Waveform Tools: Help

[#BE|oehasa @A |ww| uw dhe|e% %A

Hame [va[stimator] 20 w0 wn. 0. a0 . ssrEmo SN0 . s
E e a 1 <=0 B
Eep 2 =000
Ee o 3 <=0
e d 4 =010
B s 2 (] A Wz] b A
q
= 0] 0 Ceck | L]

By 2 A 2 A3 a A 2

K| || 4ol »FJ

& waveform2 |

Figure 3: Smulation results of Multiplexer MUX

When the selection linex{1) ands(0) become “0” (between 200ns to 250ns), the ouxpocomes “1”.
The only data input that had this value veasTherefore, by selecting “0” for both selectionéds, the
multiplexer asserted the first data inpuas it was expected. One advantage of employing ViWben
designing a component is that the component itsaif be modified and upgraded depending on the
necessity of the system. For example, the samdaptexier description can be modified to be an 8 to 1
multiplexer by just changing the code as shownigtithg 4.

library ieee;
use ieee.std logic_1164.all;
entity mux8 is port (
a, b, c, d: in std_logic_vector(3 downty O
e, f, g, h: in std_logic_vector(3 downt®; O
CH in std_logic_vector(2 dowrd
X: out std_logic_vector(3 downi;
end mux8;
architecture archmux8 of mux8 is
begin
with s select
X <= a when “000",

b when “001",

¢ when “010",

d when “011"

e when “1007,

f when “101”,

g when “1107,

h when others;
end archmux8;

Listing 4: An 8to 1 VHDL Multiplexer

Most device architectures have blocks of combimatidogic connected to the inputs of flip-flopsthe
basic building blocks for a CPLD macrocell or anG®Plogic cell. Most sequential logic designs are
sensitive to changes inclock signal or aesetsignal. VHDL activates a process only when onthese
signals presents a transition from one logic diatine other [2]. Listing 5 depicts the VHDL higével
behavioral description of an 8-bit counter.

library ieee;
use ieee.std_logic_1164.all;
use work.numeric_std.all;
entity cnt8 is port(

reset: in std_logic;

clk: in std_logic;

outclk: buffer unsigned(7 downto 0));
end cnt8;
architecture cnt8 of cnt8 is

begin
count: process (clk, reset)
begin ifreset ="'1"then
outclk <= (others =>'0";
elsif (clk'event and clk="1") then
outclk <= outclk + 1;
end if;
end process count;
end cnt8;

Listing 5: An 8-bit Counter

The countecnt8has two 1-bit inputslk andreset and one 8-bit outpututclk as shown in Figure 4.

CNTS8

clk

reset [>

outclk [7:0]

Figure4: An 8-bit Counter

Figure 5 shows the simulation results obtainediercountecnt8 The total running simulation time was

750ns and the period of the input sigd&lwas 100ns.

{- Active-HDL Sim [counter] - Waveformb =

File Search: Misw Design: Simulation Wavetorm Tools Help

» o=
[[# BB e [QS L | &8 Q| S sl 20 i B af 6T % ;%|
Name [pailstimun]l oo [+ eo. . =0, . 40 . s . cep. o 7o. . f6e
o clk ‘0 Clack §—
E = outck 03 HOo_ i Yz] 2] W05 e 300 xor e
o orezet (0 . Formula |_|

<

-
i Lo IRl = s

B waveform5

Figure5: Smulation results of Counter cnt8

The resetsignal remains at “0” throughout the whole simiglatexcept at the interval between from
590ns to 615ns. This means that the oubptitlk will restart counting from “0” after 615ns.

Once again the VHDL counter can be modified dependn the necessity of the system. In this case, th
same counteent8is modified to be a 4 bit counter by changingdbde as shown in Listing 6.

library ieee;
use ieee.std_logic_1164.all;
use work.numeric_std.all;
entity cnt4 is port(
reset: in std_logic;
clk: in std_logic;
outclk: buffer unsigned(3 downto 0));
end cnt4;
architecture cnt4 of cnt4 is
begin
count: process (clk, reset)
begin ifreset ='1"then
outclk <= (others =>'0";
elsif (clk'event and clk="1") then
outclk <= outclk + 1;
end if;
end process count;
end cnt4;

Listing 6: A 4-bit Counter

4. Conclusions

The primary purpose of this research was to study field of programmable logic. A Complex
Programmable Logic Device (CPLD) was programmedngans of a Hardware Description Language.
With the growing sophistication of applications tinoally pushing the design and manufacturing of
integrated circuits, the CPLD proved to be easgesign and upgrade. The reprogramming featureeof th
CPLD was successfully tested in this study. A magmuirement for today’s electronic systems is the
upgrading capability. The electronics industry iieggi systems to be capable of in-site reprogramming
where the upgrading task depends more on softvme on hardware. In order to achieve the proper
functionality of the system, the CPLD was reprogmad several times depending on the system’s
specifications. In terms of time and cost, thiddea saves a lot of troubleshooting time, and edsluces
the cost of replacing electronic components evierg i change is necessary.

A Hardware Description Language (HDL) such as VHiés employed to program the CPLD. The HDL
purpose was to document the electronic system théhaim to support the microcontroller technology.
This language not only defines the syntax for tystesn but also defines very clear simulations fwhe
language construct. VHDL was used to describe tbhdeinfor a digital hardware device. This model
specified the external view of the device and anmore external views. The internal view of theidev
specified the functionality or structure, while tegternal view specified the interface of the devic
through which it communicated with the other modelis environment.

References

[1] Wolf, W. (2002). ‘Modern VLSI Design Systems on Chip Desjdf"edition, Prentice Hall, USA.

[2] Skahill, K. (1996)."VHDL for Programmable Logic’ Addison-Wesley, USA.

[3] Montenegro, J. (2002)Very High Speed Integrated Circuits (VHDL) and \eg Based
Microcontroller Implementation With In System Repsmmable (ISR) Hardware ModulesM.S.
Thesis, Florida International University, Florid#SA.

[4] Bhasker, J. (1999A Verilog HDL Primer”, Second Edition, Star Galaxy Publishing, USA.

[5] More, M., and Vidal, J. (1998)Experiences on VHDL based methodologies on indis&SIC
design”, Proceedings of the International Semiconductonf@ence, CAS v, IEEE, Piscataway, NJ,
USA. Pp. 167-170.

Authorization and Disclaimer

Authors authorize LACCEI to publish the papershiea tonference proceedings. Neither LACCEI nor the
editors are responsible either for the contenbotte implications of what is expressed in thegpap

