Ninth LACCEI Latin American and Caribbean Conference (LACCEI’2011), Engineering for a Smart Planet, Innovation,
Information Technology and Computational Tools for Sustainable Development, August 3-5, 2011, Medellin, Colombia.

Evolutionary SAT Solver (ESS)

Oscar Pérez Cruz
Polytechnic University of Puerto Rico, Hato Rey, Puerto Rico, perezcruz.oscar@gmail.com

Dr. Alfredo Cruz
Polytechnic University of Puerto Rico, Hato Rey, Puerto Rico, alfredcross@gmail.com

ABSTRACT

An NP problem is a class of problem whose solution can be found if possible in non-polynomial time with a
non-deterministic algorithm. The Boolean Satisfiability Problem (SAT) is a well known NP-complete
decision problem that consists in deciding whether the variables of a propositional logic formula can be
given a value that satisfies the formula. This research will focus on digital testing by using this problem to
find the growth faults within a programmable logic array (PLA) by analyzing its Boolean equation in
conjunction normal form (CNF). The first stage of this project will be the development of a SAT solver
which will incorporate genetic algorithms. Several tests are performed with different values for each
parameter of the genetic algorithm to determine the best way to optimize the process of finding all the
possible values that satisfy a PLA Boolean equation. Also, from the SAT library, several benchmarks will be
used to determine which parameters optimize the process of finding a solution to the problem. These tests
will be evaluated by how many solutions are found and the amount of time it takes to find a solution to the
problem within a convergence and generation limit.

Keywords: SAT, Fitness, Selection, Crossover, Mutation

1. INTRODUCTION

Since the approximation to the new millennium, technology started to become the focus of many people who
wanted to create something innovative before someone else did. During those years, new technologies were
developed that now allow us to perform more complex computations that took too long to do because of the
processing power at the time. One such complex computations method that has been a focus of research in
recent years is evolutionary computation. Evolutionary computation uses theories from people like Charles
Darwin to create algorithms that modify its function and information the way biological life forms evolve
and adapt to their needs in order to survive. Some of these algorithms are called Evolutionary Programming,
Genetic Programming, Evolutionary Strategies, and Genetic Algorithm (Tomassini 1995). This paper is an
overview on how genetic algorithm works with binary encoding by solving the Boolean Satisfiability
Problem with an equation in CNF. This is the first stage of this project, were the different parameters of
genetic algorithms will be tested to identify which parameters best optimizes the process of finding the
combination of values that satisfy the equation being tested.

2. THE BOOLEAN SATISFIABILITY PROBLEM

The Boolean Satisfiability Problem, also known as SAT, is a well known NP-complete decision problem
that consists in deciding whether the variables of a propositional logic formula can be given a value that
satisfies the formula. This formula can be represented in CNF, which is a conjunction of x clauses that
contains a disjunction of y literals. A literal is the same as a variable in a Boolean equation, where its value

9™ Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-1 August 3-5,2011

can be either 0 or 1. A clause is a group of literals joined together by one of two propositional operators
(Marques-Silva 2008). A conjunction use the AND operator (/\/*) where only if both operands are 1 does it
return a TRUE (1). A disjunction uses the OR operator (V//+) where if either of the operands is a 1 does it
return a TRUE. There is a third propositional operator known as the NOT (—/’) which is combined with a
literal to give us the complement of a literal. For example, if A is 0; its complement (A’) would be 1. This
problem has been widely used in many applications like model-checking of finite-state systems, design
debugging, Al planning, software testing, identification of functional dependencies in Boolean functions, etc
(Marques-Silva 2008). It has also been used as an exemplary problem for testing genetic algorithms because
of the large search space that it can provide depending on the equation in question. This search space come
from all of the possible solutions that can be found which come from the equation of two to the power of the
number of literals in the equation. The following equation, F(ab,c,d,e.f) = (—aVc)/\
(—aVeV—e)A(—bVcVdV—e)A (@aV—bVe)A(—eV) will be use as an example to show the
different techniques performed by a genetic algorithm (Luger and Stubblefield 1997). This equation contains
a total of 64 combinations of values, 2°, which are the combination of 0’s and 1’s in all its literals, but only
30 of these combinations satisfy the equation, returns a 1 also known as TRUE.

3. GENETIC ALGORITHMS

Genetic algorithm is a search algorithm, created by John Holland in 1975, which mimics the evolution
theories created by Charles Darwin (Whitley 1994). Darwin’s theory of evolution states that all life is related
and come from a common ancestor. As time passes, individuals from each generation begin to mutate and
become something different from their ancestors. Another part of Darwin’s theory of evolution is the natural
selection which states that the best genetic parts of an individual survive to aid in the survival of the race.
These theories come true when the aspect of time is looked at through the different generations that appear
over time. In genetic algorithm, these theories are implemented as operations or stages. There are a total of
six stages in genetic algorithm: Population Generation, Fitness Calculation, Parent Selection, Mating,
Mutation and Integration. The integration phase is where the offspring’s created during the Mating Phase,
also known as the Crossover Phase; join the new population in the next generation. After the offspring’s
have filled the population in the next generation, the algorithm takes the new population and continues from
phase 2, Fitness Calculation, of the algorithm until either a convergence occurs or a solution to the problem
is found. Before running the genetic algorithm, there are several parameters that must be chosen to
determine the operation of the different phases of the algorithm. The most important parameters are:
population size, crossover and mutation rate, convergence limit, and the selection, crossover and mutation
technique to be used. Figure 1 is an example of how genetic algorithms evolve the information contained
within an individual inside a population to find a solution to its problem.

End Algorithm

If a Solution has been Found
or Algorithm Converges

Generate ,Si?r:cef:t:f Select Create Offsprings
Initial Eve Parents of the for the Next
Population e Next Generation with the

Individual in ;
Randomly k Generation Selected Parents
the Population
If Next Generation
Population isn't full
| \ 4
Integrate Mutate Some of
Offspring into the Offsprings as
If Next (S_engration Next Part of the
Fopuiaton bl Generation Evolution of the
Population Population

Figure 1: Genetic Algorithm Sample

9™ Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-2 August 3-5,2011

3.1 Population and Fitness Calculation

Each population has an amount of individuals which contain an amount of genes, fitness and a rank. Gene is
a term used as a part of the information contained within an individual. Another term used in genetic
algorithms is chromosome which represents the individual. There are several types of encoding that the
information within each individual is based on. In binary encoding, the genes of each individual are a string
of bits. In permutation encoding, the genes of each individual are a string of numbers in a sequence. In value
encoding, the genes of each individual are a string of values that could be specific to a problem. In tree
encoding, the genes of each individual are a tree of objects like functions or commands (Obitko 1998). In
order to solve the Boolean Satisfiability Problem, binary encoding is used since the literals of a Boolean
equation, which also represent the genes of an individual, can only be a 0’s and 1’s. The fitness of an
individual is used to measure how close the information contained within an individual is to the solution of
the problem. The rank of the individual is used to classify the fitness of the individual in the population.

To start the algorithm, a set of individuals with their genes is generated randomly. After the first population
is generated, the fitness of each individual is calculated by solving each clause in the Boolean equation.
Since the equation will be in CNF; if one of the genes in the individual satisfies a part of the clause, the
individual fitness increases. This process is repeated with all the clauses of the equation with each individual
in the population. If the information contained in the individual satisfies all the clauses of the equation, a
solution to the problem has been found. For this type of problem, it is better to have a higher fitness than a
lower one, because it means that the individual has solved more clauses and is closer to finding a
combination of values that satisfy the equation. A higher fitness gives an individual a much better
probability of being selected as a parent of an individual in the next generation; but because in other types of
problems it is better to have a lower fitness, a rank is needed to consider the class of fitness that each
individual has in the population. A higher rank gives an individual a much better probability of being
selected as a parent. Table 1 shows an example of a population with each individual’s fitness, rank, and their
probability of being selected as parents with different techniques. Also, the individuals 1, 3, 6 and 8 are a
solution to the problem by having a fitness of 5 because their information contains a combination of values
that satisfy the previous equation stated before. In this population, there are only three different fitness (5, 4,
and 3); meaning that their will be only three different ranks in this population. Individuals with fitness 5
have a rank of 3, while those with fitness 4 have a rank of 2 and the one with fitness 3 has a rank of 1.

Table 1: Example of a Population

ID | Genes | Fitness | Rank | Probability of Selection
(Roulette/Rank/Elite)

1 1000001 |5 3 14.3% / 15.8% / 100%

2 | 000100 | 4 2 11.4% /10.5% / 0%

3 1011001 |5 3 14.3% / 15.8% / 100%

4 |111010 | 4 2 11.4% /10.5% / 0%

5 1000111 |4 2 11.4% /10.5% / 0%

6 | 110011 |5 3 14.3% / 15.8% / 100%

7 1101011 |3 1 8.6%/5.3% /0%

8 001011 |5 3 14.3% / 15.8% / 100%

3.2 Selection

Each individual in a population has a position in their society. Normally the individuals that fit a profile
would be in a very high position while others in a lower position. As already stated, in genetic algorithms,
the position of an individual is determined by their fitness and rank which gives them their probability to
become parents of the next generation. Each individual can be selected to be a parent of more than one
individual.

9™ Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-3 August 3-5,2011

3.2.1 Roulette Wheel Selection

The roulette wheel selection technique is a fitness proportionate technique where the fitness of all
individuals in the population is added. To determine the probability of selection that each individual has, the
fitness of each individual is divided by the total fitness of the population. To select the individual, a random
number is generated from 0 to the fitness of the population. Then each individual is considered by giving
them a range determined by their fitness. This range starts from the previous individual’s range limit and
ends with the current individual fitness plus the previous individual’s range limit. As an example using the
individuals in Table 1, the range of the first individual would extend from 0 to 5, while the range of the
second individual would extend from 5 to 9, and so on. If the generated random number is 7; then the
selected individual to become a parent of the next generation will be the second individual. Figure 2 is an
example of the probability that each individual has of being selected using this technique with the
individuals from Table 1.

14.3% 14.3%

8.6% 11.4%

14.3%
14.3%

11.4% 11.4%
‘m E20304W506 @7 I:IS‘

Figure 2: Probability of Selection of Every Individual in Table 1 using Roulette Wheel Selection

3.2.2 Rank Selection

The rank selection uses the same process as the roulette wheel selection. The only difference is that it
considers the rank and not the fitness. Figure 3 is an example of the probability that each individual has of
being selected using this technique with the individuals of Table 1.

15.8% 15.8%

5.3%
10.5%

15.8%
15.8%

10.5% 10 5%

‘EH I2E|3E|4I5EI6I7EI8‘

Figure 3: Probability of Selection from Each Individual in Table 1 Using Rank Selection

3.3 Mating: Cloning or Crossover

For a race to survive and prosper, the genes of the fittest individuals must continue on to the next generation.
This is done by mating and creating offsprings that will carry the genes of the current generation to the next.
To bring this belief in genetic algorithms, the information from the previous selected individuals is used to
produce two new individuals, known as offspring’s through different techniques called cloning and
crossover. Cloning creates two offspring’s with the exact information as their parents while crossover
combines the information. To determine how the offspring will be created, a random number is generated
and compared with the crossover rate. If the number is higher than the crossover rate, the cloning technique
is used; if not one of the following crossover techniques is used. Each technique will be explained assuming
that the selected parents are individuals 3 and 6 from Table 1.

9™ Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-4 August 3-5,2011

3.3.1 Single-Point Crossover

A random number needs to be generated to determine the point where the information of each parent is
divided between the offspring’s. Figure 4 shows how the random number divides the information between

each parent in two parts to create the offspring’s. Each offspring will have the first part of one parent, while
the second part is interchanged between them.

— Crossover Point: 3 —

011 | 001 | Parents [*110 | 011

| J
v v LA |

011 | 011 |Offsprings| 110 | 001

Figure 4: Single-Point Crossover Example

3.3.2 Two-Point Crossover

Two random numbers need to be generated if this technique is used, to determine the point where the
information of each parent is divided between the offsprings. Figure 5 shows how the random numbers
divide the information between each parent in three parts to create the offspring’s. The first and last part of
each parent goes to one offspring, while the middle part is exchanged between them.

Crossover Points: 1 & 5

\ \ A
0] 1100 |1 Parents 111001 |1
—n —
Y Vv Y R R
01001 |1 Offsprings 111100 |1

Figure 5: Two-Point Crossover Example

3.3.3 Uniform Crossover

An equal amount of random numbers to the amount of genes of each individual are generated to determine
which information will be exchanged between the parents in order to create the offsprings. Figure 6 contains
a random template of the genes that show which genes are exchanged between the parents. The position in
the template where there is a 1, mean that the genes of the parents are exchanged.

Crossover Tem‘plate: 101010
A B BN B 2 |
1 0

1 1({1]10|0(1]|1]| Parents

111]0{0(1]1]]0({1|1]0]|0

-

Offsprings

Figure 6: Uniform Crossover Example

9™ Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-5 August 3-5,2011

3.4 Mutation

As the algorithm gets closer to finding one or more solutions, the information contained within many of the
individuals become almost identical possibly causing a convergence in the algorithm. The convergence of
the algorithm is considered when the average fitness of the population, population fitness divided by the
amount of individuals, is repeated through an amount of generations. Sometimes depending on the equation
or the problem, no solution is found because of this. A solution to this problem is the Mutation Phase.
Through each generation in every race, a small mutation takes place. This keeps the individuals of each
generation different from the others. The same theory is applied in genetic algorithms. After the Mating
Phase, a mutation is considered for each offspring. This is done by generating a random number in which if
the number generated is equal or less than the mutation rate, the following mutation technique is performed.

3.4.1 Bit Inversion

Since the information contained within each individual in this type of encoding is a collection of 1’s and 0’s,
all that has to be done is invert the bit of a specific set of genes. Each gene will have a 50% chance of
actually being mutated. Figure 7 contains a random template which indicates which genes will be mutated.
The position in the template where there is a 1, mean that the gene value will be inverted.

Mutation Template: n n 0

Original Offspring: [0 [1[0 |0 (1|1

Mutated Offspring: n 1

Figure 7: Bit Inversion Example

3.4.2 Forced Bit Mutation

Even with the bit inversion, there could still be a problem with the convergence of the algorithm since many
applications that use genetic algorithm choose to have a very low mutation rate, like 1% or 0.1%. Because of
this, many offspring may not go through a mutation phase causing the algorithm to converge really fast. For
this reason, a solution for this type of encoding is to do a force mutation using bit inversion every n genes
that has been passed on to the next generation regardless of the mutation rate. This is a special type of
mutation which will occur to any gene of any offspring that will be integrated into the next population. This
type of mutation could work very well for those algorithms that use a very low mutation rate and whose
algorithm converges really fast without having found a solution; since a change in a specific bit could
change the entire fitness of the individual, also changing the average fitness in the population.

Counter: | 97 1 98 | 99 112

Original Offspring: | 0 | 1 [0O | O | 1 | 1

Mutated Offspring:[g | 1 | 0 1 1

Figure 8: Force Bit Mutation Example

9™ Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-6 August 3-5,2011

4. EXPERIMENT

The parameters of the genetic algorithm that are being tested are the population size, the crossover and
mutation rates, and the selection and crossover techniques. The experiment will run with a generation limit
of 50,000 generations and a convergence limit of 100. To avoid a fast convergence, the force bit mutation
will be forced in each test every 1000 bits that is pass to a new generation. This technique may increase as it
may decrease the chance of finding combination of values that satisfy the equation depending on the amount
of literals of the equation and the population size. At the same time, it will avoid a fast convergence which
will help during the testing of a PLA equation which contains many combinations of values that satisfy the
equation. To identify which parameters best optimizes the process of finding a combination of values that
satisfy the problem, two types of testing are performed.

The first type of testing will be with a PLA equation where all the combinations of values that satisfy the
equation will be searched. The amount of combinations of values that satisfy the equation that are found and
the amount of time it takes to find the last combination will be considered when choosing the best choice of
parameters. For this type of testing, a PLA equations with 12 literals and 20 clauses will be used (Cruz
2002).

The second type of testing will be with benchmarks taken from the SAT library to test the algorithm as a
SAT solver and which parameters of the genetic algorithm best optimizes the process of finding a
combination of values that satisfy the equation. The amount of time and the amount of generations will be
considered when choosing the best choice of parameters. For this type of testing, three benchmarks
containing 20 literals and 91 clauses will be used.

5. PRELIMINARY RESULTS

After performing the testing with a population of 16 individuals, several conclusions can be gathered of the
differences that some parameters of the genetic algorithm offer. The following parameters can be compared
with the current gathered data.

5.1 Roulette Wheel Selection vs. Rank Selection

Rank selection offers an advantage over roulette wheel selection as it takes each fitness and ranks their value
to give those individuals with a higher fitness a higher chance of being selected as parents. This is taken into
consideration at later generations when the fitness of each individual is very similar. As an example, Figure
9 shows the difference of using Roulette Wheel Selection and Rank Selection with a population of eight
individuals with the following fitness: 50, 51, 52, 53, 54, 55, 56, and 57. As it can be seen, the probability of
an individual being selected using roulette wheel selection is almost the same for all individuals in the
population; while using Rank Selection there is a higher chance to select the best individuals of the
population to be parents of the next generation.

Roulette Wheel Selection Rank Selection
13.3% 11.7%
11.9%
13.1%
12.1%
12.9%
12.6% 12.4% 16.7%

‘EH E20304W506 W7 EISHEH E20304W506 W7 Ds\

Figure 9: Difference between Roulette Wheel and Rank Selection using an advanced Boolean
Equation

9™ Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-7 August 3-5,2011

Even though rank selection offers an advantage over roulette wheel selection; for the PLA equation, the
roulette wheel selection is much better than the rank selection. It can be seen in Figure 10, assuming that the
total amount of combinations of values that satisfy the equation is 1257; most of the simulations running
with the roulette wheel selection find all the combinations of values and the last combination is found much
faster than those using rank selection. This is because roulette wheel selection considers all individuals in the
population equally depending on the fitness. This is what is being searched for when looking for all the
combinations of values that satisfy the PLA equation. But for the SAT benchmark testing, where only one
combination of values that satisfy the equation is searched, rank selection is better since it offers the best
individuals as parents for the next generation. As it can be seen in Figure 11, the time it takes to find a
combination of values that satisfy the equation is much faster using the roulette wheel selection.

5.2 Single Point Crossover vs. Two-Point Crossover vs. Uniform Crossover

As it can be analyzed in Figure 10, by comparing the times the last combination of values was found in each
simulation, the uniform crossover gives a much better performance than the other two techniques because
the uniform crossover has the possibility of making many more combination of values than the other two
techniques, making a lot of difference in the later generations of the simulation. However, for the SAT
benchmarks, as it can be seen in Figure 11, more testing needs to be done before considering which
crossover technique might be better because most of the results of the simulations are very similar for all
techniques.

5.3 80% vs. 100% Crossover Rate

The main difference between having an 80% and a 100% crossover rate is that with 80% there is a small
chance that the offspring have the same data as the selected parents. As it can be seen in Figure 10, it doesn’t
affect much since the time it takes to finish the test and the time it takes to find the last combination of
values that satisfy the equation is very close. However, for the SAT benchmark, it is better to have 100%
crossover rate since it gives the new individuals of the new generation a new set of values that differentiate
from the previous generation. This may bring the algorithm closer to a combination of values that satisty the
equation. This is seen in Figure 11 as many of the satisfied simulations have a 100% crossover rate.

5.4 10% vs. 1% vs. 0.1% Mutation Rate

Utilizing the results of the simulation, it can be clearly seen that for both types of testing using a mutation
rate of 0.1% gives neither all nor most of the combinations of values that satisfy the PLA equation and
converges too fast using a benchmark from the SAT library. However, between a mutation rate of 10% and
1%, it is better to have 10% for both types of testing since the mutation takes the offspring after the
crossover and gives them new values that each parent didn’t have. This is a risk because a value may be
changed; decreasing the fitness of the individual or it may increase it to the point of having the combination
of values that satisfy the equation. As it can be seen in Figure 10 and 11, the best times of either finding the
last combination of values that satisfy the PLA equation or the combination of values that satisfy the SAT
benchmark are in the simulations with a 10% mutation rate.

9™ Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-8 August 3-5,2011

GA Parameters File: Small PLA (12 literals and 20 clauses)

Population Size |Selection Operator Crossover Operator | Crossover Rate Mutation Rate | Solutions Found Generations |CPU Time (s) Time Last Solution (s)
16/ Roulette Wheel Single-Point 0.8 01 1257 50000 741.984 61.51
16 Roulette Wheel Single-Point 0.8 0.01 1257 50000 876.627 444 694
16 Roulette Wheel Single-Point 0.8 0.001 199 3890 47.486 45723
16 Roulette Wheel Single-Point 1 01 1257 40000 728131 8513
16 Roulette Wheel Single-Point 1 0.01 1257 50000 859 826 419.406
16/ Roulette Wheel Single-Point 1 0.001 88 503 6.676 5.506
16 Roulette Wheel Two-Point 0.8 01 1257 50000 748.975 84.304
16 Roulette Wheel Two-Point 0.8 0.01 1257 50000 894.929 599.729
16 Roulstte Wheel Two-Point 0.8 0.001 46 483 6.271 5.194
16 Roulette Wheel Two-Point 1 0.1 1257 50000 728.367 78.766
16 Roulette Wheel Two-Point 1 0.01 1257 50000 862.2 511.917
16 Roulette Wheel Two-Point 1 0.001 110 1496 17.94 16.504
16 Roulette Wheel Unifarm 0.8 0.1 1257 50000 750.388 56.487
16 Roulette Wheel Unifarm 0.8 0.01 1257 50000 879.525 270.162
16 Roulette Wheel Uniform 0.8 0.001 83 1059 13.977 12.651
16 Roulstte Wheel Unifarm 1 01 1257 50000 731684 40.762
16 Roulette Wheel Uniform 1 0.01 1257 50000 891.225 345292
16 Roulette Wheel Unifarm i 0.001 330 5730 77422 77.017
16 Rank Single-Point 0.8 0.1 1257 50000 981.395 97.297
16 Rank Single-Point 0.8 0.01 1252 50000 1071.29 1070.25
16 Rank Single-Point 0.8 0.001 63 427 5.148 4.633
16 Rank Single-Point 1 0.1 1257 50000 929.416 132.023
16/Rank Single-Point 1 0.01 1256 50000 1115.19 1005.78
16 Rank Single-Point 1 0.001 60 147 2.199 1 06|
16/Rank Two-Point 0.8 01 1257 50000 946.361 106.09
16/Rank Two-Point 0.8 0.01 1257 50000 1051.83 862 618
16| Rank Two-Point 0.8 0.001 46 1323 14.957 14.391
16 Rank Two-Point 1 01 1257 50000 933.236 149 561
16 Rank Two-Point 1 0.01 1254 50000 1058.24 1037.91
16 Rank Two-Point 1 0.001 65 182 2705 1.66
16/Rank Unifarm 0.8 01 1257 50000 911.75 98.521
16/ Rank Unifarm 0.8 0.01 1256 50000 1064.61 718.851
16/Rank Unifarm 0.8 0.001 283 9198 131.525 131.301
16/Rank Uniform 1 0.1 1257 50000 870.817 127.891
16 Rank Uniform 1 0.01 1255 50000 1099.23 1030.52
16 Rank Uniform 1 0.001 201 4798 69.278 67.464

Figure 10: PLA Simulation Table

GA Parameters File: uf20-01.cnf File: uf20-02.cnf File: uf20-03.cnf
Population Size Selection Operator | Crossover Operator | Crossover Rate | Mutation Rate Generations CPU Time (s) Satisfied? Generations CPU Time (s) Satisfied? Generations CPU Time (s) Satisfied?
16 Roulette Wheel Single-Point 0.8 0.1 3046 83.377 NO 1558 41.928 YES 50000 1149.29 NO
16 Roulette Wheel Single-Point 0.8 0.01 50000 12018/ NO 5375 134 566 YES 50000 112471 NO
16 Roulette Wheel Single-Point 0.8 0.001 633 20.298 NO 376 12.064 NO 565 17.178 NO
16 Roulette Wheel Single-Point 1 0.1 12853 299.319 YES 3919 103.137 | YES 50000 1135.85 NO
16 Roulette Wheel Single-Point 1 0.01 12473 267.772|YES 1062 29.798 YES 16089 411.091 YES
16 Roulette Wheel Single-Point 1 0.001 497 16.64 MO 546 16.734 MO 147 4.874 NO
16 Roulette Wheel Two-Point 0.8 0.1 37405 923.718 YES 1924 54 532 YES 50000 1092.51 NO
16 Roulette Wheel Two-Point 0.8 0.01 24494 652.593 YES 192 7.329 YES 50000 1083.74 NO
16 Roulette Wheel Two-Point 0.8 0.001 232 8.28 NO 762 26447 NO 274 8.379 NO
16 Roulette Wheel Two-Point 1 0.1 21734 598.309 YES 1392 42.298 YES 2371 60.971 YES
16 Roulette Wheel Two-Paint 1 0.01 11865 342.499 YES 3929 96.65 YES 50000 1084.4 NO
16 Roulette Wheel Two-Point 1 0.001 142 4.951 NO 245 9.059 NO 262 8.467 NO
16 Roulette Wheel Uniform 0.8 0.1 3963 111.204 YES 5460 113.669 YES 50000 1183.65 NO
16 Roulette Wheel Uniform 0.8 0.01 6937 170.172|YES 156 5.061 YES 50000 1151.78 NO
16 Roulette Wheel Uniform 0.8 0.001 422 14.087 NO 141 4 85 NO 472 16172 NO
16 Roulette Wheel Uniform 1 0.1 11250 264.521 YES 1448 33.593 YES 20028 510.106 YES
16 Roulette Wheel Uniform 1 0.01 13519 305.939 YES 2668 59.31 YES 50000 1170.78 NO
16 Roulette Wheel Uniform 1 0.001 297 9.25 NO 196 6.154 NO 767 24.049 NO
16 Rank Single-Point 0.8 0.1 2358 55.521|YES 345 9.751 YES 674 19.212 YES
16 Rank Single-Point 0.8 0.01 50000 1043.52|NO 496 12.472 YES 50000 1192.93 NO
16 Rank Single-Point 0.8 0.001 349 10.593 MO 150 4.715 NO 295 9.219 NO
16 Rank Single-Point 1 0.1 492 15.585 YES 159 5.268 YES 14445 304.365 YES
16 Rank Single-Point 1 0.01 10090 208.379 YES 657 15.806 YES 50000 1127 NO
16 Rank Single-Point 1 0.001 604 17.488 NO 325 9.179 NO 360 11.548 NO
16 Rank Two-Point 0.8 0.1 4586 113.256 YES 90 3.07 YES 1749 56.947 YES
16 Rank Two-Point 0.8 0.01 50000 1043.88 NO 1404 31.033 YES 50000 1127.26 NO
16 Rank Two-Point 0.8 0.001 260 8.658 MO 3N 8.747 NO 625 21.597 NO
16 Rank Two-Paint 1 0.1 613 18.454 YES 609 16.215 YES 7397 206.636 YES
16 Rank Two-Point 1 0.01 24980 522.694 YES 2426 49.169 YES 50000 1127.63 NO
16 Rank Two-Point 1 0.001 306 10.608 MO 328 9.658 NO 170 5.891 NO
16 Rank Uniform 0.8 0.1 705 23.914 YES 623 14.098 YES 1374 39.18 YES
16 Rank Uniform 0.8 0.01 2536 67.594 YES 1433 29.596 YES 50000 1081.49 NO
16 Rank Uniform 0.8 0.001 152 5.99 NO 122 3.565 NO 130 4.889 NO
16 Rank Uniform 1 0.1 738 25.303 YES 13 0.551 YES 56 2401 YES
16 Rank Uniform 1 0.01 1934 55.738YES 147 4.085 YES 3516 93.73 YES
16 Rank Uniform 1 0.001 160 6.099 NO 122 3.5693 NO 382 12.767 NO

Figure 11: SAT Simulation Table

6. CONCLUSION AND FUTURE WORK

For now, preliminary results lead me to believe that using the following parameters of the genetic algorithm
with a PLA equation give me a better chance of finding most, if not all, the combinations of values that

9™ Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-9 August 3-5,2011

satisfy the equation: roulette wheel selection, uniform crossover, either 80% or 100% crossover rate, and
10% mutation rate. Also, with the SAT library benchmarks, preliminary results lead me to believe that using
the following parameters of the genetic algorithm give me a better chance of finding a combination of values
that satisfy the equation: rank selection, 100% crossover rate, and 10% mutation rate. There is still more
testing being done with the different population sizes and other techniques for each of the operators of the
genetic algorithm. More results are being gathered as time passes, and a better idea of which parameters best
optimize the performance of the algorithm can be determined in the future.

The future of this project will include the implementation of analyzing the combinations of values that where
found that satisfy the equation to find the growth and shrinkage faults in the equation assuming it came from
a PLA. More selection, crossover, and mutation techniques will be added and tested to see if the new
techniques improve the performance of finding one or more combination of values that satisfy the equation.
The solver will be compared with other algorithms, specifically those that where submitted in the SAT Race,
to compare the techniques used in each algorithm.

7. ACKNOWLEDGEMENTS

I would like to thank Dr. Alfredo Cruz, for introducing me into this area of research, Prof. Luis Ortiz Ortiz,
for introducing me into the field of computer programming, the Nuclear Regulatory Commission (NRC
grant no. 27-10-511) for providing me with a fellowship which allows me to continue with my studies and
my research in Al, and my fellow grant recipient and to those professors who gave me their opinion about
my work.

REFERENCES

Cruz A. (2002). Evolutionary Algorithms for VLSI Test Automation. The Graduate School of Computer and
Information Sciences Nova Southeastern University

Luger G. F. & Stubblefield W. A. (1997). Artificial Intelligence Structures and Strategies for Complex
Problem Solving. Boston, MA: Addison-Wesley Longman Publishing Co

Marques-Silva, J. (2008). Practical Applications of Boolean Satisfiability. Workshop on Discrete Event
Systems (WODES'08) (May 2008), Goteborg, Sweden. DOI=
http://eprints.ecs.soton.ac.uk/15340/1/jpms-wodes08.pdf.

SATLIB — Benchmark Problems, Retrieved February 28, 2011, from
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

Obitko, M. M. (n.d.). Main page - Introduction to Genetic Algorithms - Tutorial with Interactive Java
Applets. www.obitko.com. 1998. Retrieved February 6, 2011, from
http://www.obitko.com/tutorials/genetic-algorithms/index.php

Tomassini, M. (1995). A Survey of Genetic Algorithms. Annual Reviews of Computational Physics III,
Volume 3. (October 1995). DOI= http://neo.lcc.uma.es/Articles/tomassinixx_2.pdf

Whitley, D. (1994). A Genetic Algorithm Tutorial by Darrell Whitley. Statistics and Computing (4):65-85,
1994. DOI= http://www.cs.colostate.edu/~genitor/MiscPubs/tutorial. pdf

Authorization and Disclaimer

Authors authorize LACCEI to publish the paper in the conference proceedings. Neither LACCEI nor the
editors are responsible either for the content or for the implications of what is expressed in the paper.

9™ Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-10 August 3-5, 2011

