An Empirical Approach of the Impact of the Human Capital Engineering towards the Lean Manufacturing Organizational Peformance

Jesús David Argueta Moreno

National Autonomous University of Honduras (UNAH), Tegucigalpa, Francisco Morazan, Honduras, jargueta@iies-unah.org

ABSTRACT

This cualitative Investigations, holistacally evaluates the Human Capital Engineering, as a contemporary mean, to obtain the service manufaturing upgrading, on the contemporary industrial framework.

Through this study, we must unveal several myths upon the Human Capital as an intangible asset and its direct impact over the adoption, of the new corporate strategies, that lead the new born companies into the lean manufacturing organizational modelling.

In the Past centuries, the accountable assets, were based upon the tangible elements. The present investigation, aims to expose the various benefits obtain through the Human Capital conditioning, based upon the lean manufaturing principle "0% wastes".

The new born enteprenour projects, currently offer a limited productive scope, over the production of goods, due to some limitations over the new age technological acknowledgements, that stimulate the development countries importation patterns, and there by generate an unproportional pace against the exportations produced by the countries industries.

Ever since the Latin American countries, Gross National Products Equilibrium points, are miss matched, the importation of these goods and the services derived from the allocation of this articles to the potential customers is now a phenomena that has consume an enormous percentage of the countries economic activities. Parting from the above, the relevancy of the Organizational human capital, throught the Lean Manufacturing scope, is essential, towards a full comprehension of how the regional economies evolve.

Key Words: Globalizacion Pace, Lean Manufacturing, Benchmarking, Human Capital, Enteprenour.

1. Introduction

The Globalization of tecnology, the creation of new markets, businesses and industries, into more competitive clusters of manufaturated products and services, is a clear reference, of how the evolution of the tools and different productive means have mutate, in time, on their need to adapt, towards the best known market capitalism principle, that states "the survival of the fittest".

Despite their monetary, technological or operative limitations, each company is now jeopardized by the current new client taste and volatile consumption patterns, that present no warrants in respect to productive forecasting stability.

Nowadays, every company needs to aim, towards a symmetrical pattern of individuals, able to adapt their personal goals, into collective corporate objectives that need to be translated into leaner and stronger strategic skills. This investigation, approaches 2 main variables:

- The Contemporary Human Capital Engineering Techniques.
- The Lean Manufacturing Organizational Key Performance Indicator (KPI's) and it's Best Practices, over the Central American productive sectors.

Were, the investigations fundamentals, are based upon the Lean Manufactuing dependance over the contemporary Human Capital Engineering techniques (Please revise figure No 1). And its side effects over the continuos Human Capital Valorization.

FIGURE NO 1 INVESTIGATIONS MAIN VARIABLES

A: The Contemporary Human Capital Engineering Techniques.

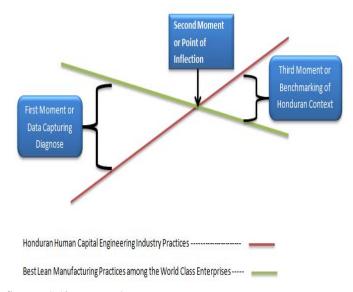
B: The Lean Manufacturing Organizational Best Practices, over the various Latin American productive sectors.

Source: Self Interpretation

This document approaches the invetigations among the 3 bechmarking key momentums (Please revised figure No 2,), which are:

- Stage of Diagnose, phenomena know how acquisition and problem acknowledgement.
- The Point of Inflexion, where the human Resources Management, adopts a maleable position through Revalorization of the Staff, with the use of Human Capital Engineering.
- The Evaluation of the tools effectiveness and positive impacts generated on the company, through the different lean manufacturing stimulus.

Where the Lean Manufacturing KPI's are diagnosed, measured, rendered, compared and upgraded threw various alternative Human Capital Organizational Measures, driven by the strategic levels of each corporation.


Investigations main goal:

Determine and Identify the Impacts and benefits gained by the World Class Companies, through a proper Human Capital Engneering (HCE) process.

Specific Objectives:

- The identification of the main assets or KPI's of a successfull Human Capital Engineering process, through a theoretical background search.
- The identification of the benefits and impacts of a proper Human Capital Engineering process.
- The description of the specific traits, processes and activities, that assemble the best Human Capital Engineering Tecniques.

Figure No 2 The 3 Key Momentums, of the Human Captal Engineering incidence, over the Lean Manufacturing of the Services in Honduras.

Source: Self Interpretation

1.1 HUMAN CAPITAL MANAGEMENT EVOLUTION

The contemporary workforce is nt what it used to be, due to the various complex evolutions on the markets accelerated pace, ever since most of the "new age" foreign companies, tend to adopt a horizontal organizational scheme, on a competitive race, towards virtual and project based more proffesionalization, where workers are less tethered to traditional offices and set hours. The continuous growth of the labor markets, suggests a combination of the different genders ethnicity, religions and generations, that clearly demonstrate that todays workfore is more diverse in every sense of the word. "Where workers expectations, needs and definitions of success vary widely" (LLP, 2011).

From the previously mentioned, we could state that the Human Capital Management and conceptualization has suffered dramatic alterations across time, who cross fires the employees perspectives of the tasks required for a specific job, runing into a multifacetic range of efficiency auditing techniques, developed by the employer.

The human capital concept evoulution, can been tracked, since the 17th century, by Sir William Petty, who placed a value on the english laborers , in oder to demonstrate the countries current industrial power and war technologycal potentialities.

Later on the 1850's William Farr, developed a forecasting method, based on the predictions of the human future earnigs, which he defined as:

Earnings - Living expenses = Wealth Repersentation,.

Despite the great management advances on the following periods, driven by the industries and emerging markets, the great barrier towards the approach of the Human Capital (HC) wasn't overcome, until PhD. Theodore Schultz promulgated the movement of "Educational Capital" in 1961 (Rockford, 1999), where he blended the concepts of corporate investment and corporate consumption, in a homogenous pattern that identified 5 main areas of H.C. Stock, which are:

- Health Care
- On the Job Training
- Formal Education
- Migration
- Extension Programs

Where the H.C.E. and Lean performace measures are bonded, and can be found, through the "On the Job Trainig" basis component.

Although, before we describe the articulation between this 2 topics, we must depict each variables: main characteristics, inflection points and development scenarios, in order to properly describe their impacts and relations.

1 HUMAN CAPITAL CONCEPTUALIZATION 1.1 WHAT IS HUMAN CAPITAL?

Human Capital is generally refered to the stock of competences, knowledge, social and personal attributes, embodied in the ability to perform labor, so as to produce economic value (Simkovic, 2012). Although this particular concept has evolve through time and adapted among a series of particular features that have upgraded it's basic composition, the new management strategies are one of the most significant evidences of it's best stategic means to control the new era of corporate performance requirements.

Generally, when we approach the term Human Capital (H.C.), we are use to conceptualize it as a merely intagible asset to an organization.

Although, now a days, the Organizational H.C. is viewed, as potencial corporate mean, to stimuli the companies current benchmark (Quesada, 1995). The valoration of the Human Capital potentialites, has evolve through time, with new significate features, in such a pace that even the low budget firms, have acquiere several HCE modules, that enabce their employees habilities, skills and capabilitites.

to a moderate and efficient control of their performance, to the point where several studies have determined that, the proportional intensity of an investment over their human capital assets, leads to a greater accomplishment of their long term goals (Schultz, 1961).

For instance, one may support the recently stated, by referring the R. Almeida and P. Carneiro investigations, who clearly validate, that the firms who invest on their associates training, reflect an upgraded estimated return rate between 17%-24% superior tot their regular basis returns, suggesting that the companies, whose job training techniques directly stimuli the H.C., reflect a significate result upon their efforts (Heike, 2002).

Similar to these investigations, the industrial scientists: Brooks, Hairstone and Nafucho, concluded from an extensive exploration of the theoretical background and a qualitative research upon Human Capital potentialities, that a strong correlation exists among how the companies applied specific strategies over the Organizational Human Resource Development (HRD) and the Organizational Productivity key performance indicators (who evaluate individual collective and employee performance); were the productivity is triggered by the associates empowerment and process acknowledgement (Heike, 2002).

1.2 WHAT IS HUMAN CAPITAL ENGINEERING?

We could define the Human Capital Engineering (HCE) process, as a mutation product, of the performance management best practices, that attends the creation or transformation of a work enviorment or setting in which people are enabled to perform over an idealist theoretically based scenario and thereby deploy all their skills and abilities on the tasks they are responsible for (Brookman, 2006).

Among the critical paths of the HCE, we could state that the main activities for its achievement are based on the following processes:

• The development of a clear job description, that identifies and

precisely determines the academic, skills and complexness of the tasks required for the proper execution of a task.

- The meticulous selection of the proper personnel.
- The supply of effective education, training and orientation programs to the company associates.
- Provide ungoing coaching and feedback information, over the employee performance.
- The supply of promotional and career development opportunities to the employees.
- The design and modeling of effective compensation and recognition systems, that reward the personnel contributions.

Where as for todays economy, the HCE, has become a strong competitive and innovative tool, to many leading corporations on the globe (Muhamad, 2012), by providing the following benefits:

- Enhancing individual and collective performance.
- Stimulating the organizational structures of each manufacturing unit.
- Improve hiring practices
- Improve emplyee retention.
- Integrating the aggregated value of each Supply Chain Management corporate instance.

1.1 HOW AND WHEN TO APPLY HUMAN CAPITAL ENGINEERING FOR SPECIFIC TASKS?

Given the importance of the Human Capital Engineering (HCE), to the performance of regional economies, What can regions due to increase their Human Capital? The Human Capital Stock at all regional levels if pushed to its maximum range, can be extremely efficient to the macroeconomic development context of any country (Cornachione, June 2010). According to the Hans Heike theory, the payoff of the HCE strategic investments, can be quantify through a 2 way methodology, that clearly describes the return rate of investments for the companies optimization processes (Heike, 2002), which are:

1. Indirect Payoff rate of the HCE investment

Where the Heike studies, have demonstrated, that the specific trained and stimulated

competences, acquired on a company by an associate, directly support the higher education foundations, with the articulation of a exogenous variable defined as "experience absorption cycle" (Heike, 2002).

2. Direct Payoff rate of the HCE investment

Several investigations upon the direct Payoff, over the associate formation, generally relate its performance tendencies, to the rate at which their employees, capture the core objectives, fundamentals and principals of their daily labor practices and apply them on a coordinated and fully automated pattern (Heike, 2002).

On the other hand, we can infer that this rate of return, refers to short term experience acknowledgement of the employee performance.

2 Lean Manufacturing:

2.1 What is Lean Manufacturing?

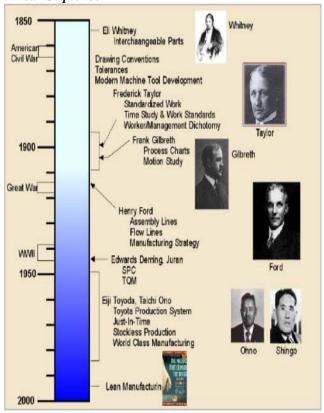
Whenever we refer to Lean Production, Manufacturing or simply Lean, as a production practice, that considers the optimization of resources, with the specific goal of creating value for the end customer, we may probably address the Toyota Production System (TPS) who absorbs and captures the true essence of efficiency and optimization. This manufacturing philosophy, is the product of the mutation and evolution of the fittest companies in the market, who pursuit the constant market adaptation.

This movement started in the early 1890's, through the studies of Frederick Winslow Taylor, who began to study the individual operators and their working methods, leading to a particular industrial performance instrument defined as the "Scientific Method".

Once the Winslow model was fully comprehended, the Industrial Scientists Lillian and Frank Gilbert, incorporated motion and motivational stimuli to this instrument, generating the development of a new tool defined as "Process Charting", who contributed to the transportation, logistic patterns, company's layout planification and the association between the employees attitude and its incidence towards its job monthly performance (Dailey, 2003).

Later on the mid 1910's Henry Ford and Clarence Sorensen, redefined the Winslow instrument, into fully integrated system, with specific tasks and state of the art technology, by conforming the newly functional automated assembly lines, suitable for the moderately trained workers.

Although, the Ford Model T Manufacturing, demonstrated efficiency through time, the market started to challenge the Ford Corporation with bigger HCE quality quests, who demanded the study and methodology upgrading from different scholars and scientists, such as Edward Deming, who was able to determine the markets current quality standards and thereby, conceive the corporate Total Quality Management assessment strategies, as a direct mean to approach cost minimization (Corbett, 2003).


In time, the Japanese industry, consolidated all the theoretical background of performance, optimization and cost reduction protocols, by reconstructing the evolution of the current industries Key Performance Indicators (KPI's) and their best practices, with the use of their own model, defined as the "Toyota Production System" (TPS), who now a days still remains as part of the global World Class Manufacturing (Ohno, 1998).

In time, the study of the TPS standardized the perspectives, that lead to the contemporary research, over the uncomprehend impacts, over the global manufacturing framework.

The TPS new tendencies and its theoretical universality, among the different industries and economic context, drove the lean manufacturing processes (derived from the Japanese philosophy), to focused on the minimization of the seven waste categories:

- 1. Unnecessary Transportation tasks.
- 2. Unnecessary Inventory.
- 3. Unnecessary risky motion tasks.
- 4. Imprecise timing and bottle necks on the processes.
- 5. The over processing of a unit (Unnecessary costs).
- 6. The Over Production of a specific product, who do not counts with the required demand, to pull it quickly on the market.
- 7. Product Defect minimization.

Figure No 2 The lean Manufacturing Time Line Linear Sequence

Source: www.strategosinc.com/just_in_time.htm

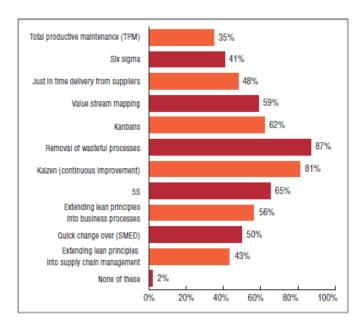
2.2 What are the Lean Manufacturing main Benefits?

"Lean Manufacturing is an operational strategy oriented toward achieving the shortest possible cycle time by eliminating waste" (Rockford, 1999).

As previously mentioned this strategy is derived from the TPS and is the source of key to increase the value added production main features.

Despite the tangible and direct benefits of the lean manufacturing lower costs, shorter lead times and quality upgrading, we may perceive the additional values of its application, such as:

- Single-piece production.
- · Repetitive order characteristics.
- Just-In-Time materials/pull scheduling.
- · Short cycle times.
- Quick changeover of tools, equipment and personnel.
- Continuous flow work cells.
- Collocated machines, equipment tools and personnel.


- · Compressed space.
- Multi-skilled employees .
- Flexible workforce.
- Empowered employees.
- High first-pass yields with major reductions in defects.

Parting from the above, we can state, that the lean manufacturing benefits, are based upon the main project management principles:

- Resource efficiency and usage maximization.
- Output timing and staff performance.

In fact, we could state that the Lean Manufacturing culture, has created an enormous impact, over the different industrial new era frameworks, to the level, that 12 of main productive currents, approached by the World Class Corporations, derived from this particular concept and are focused on the same waste reduction goals (please revise figure number 2).

Figure No 2 Lean Manufacturing Contemporary Tendencies.

Source: Support Lean Manufacturing Principles with IBM Maximum Asset Management (2007), from the World Class Manufacturing Report, collected by the Tivoli group.

As one may appreciate, on the figure No 2, the removal of wasteful processes is still, the one of the most referred tools across the globe, next to the kaizen philosophy, were, the industry usage among this optimization instruments have outnumbered the

common administrational practices, towards the integration of the whole productive system, into a single automated process.

2.3 How can one achieve the Lean Manufacturing Maximum Efficiency?

The maximum efficiency of the lean manufacturing productive system, is reached through a based performance instrument, defined as: The Theory of Constraints, that procures and offers the resources required to achieve the targeted benefits planned in a medium and long term time line (Dettmer, 2011).

Lean manufacturing is stereotyped, by the world class plant managers as a long term measure, that provides the most precise benchmark of the internal functional and operative affairs that surround the company. Therefore, the Theory of Constraints, states, that among the main factors, that determine the Lean Manufacturing maximum efficiency characteristics, we may state, the main KPI's for these objectives (Performance, 2002), are the following:

- 1. Manufacturing Flow
- 2. Human Capital Organization
- 3. Process Control
- 4. Metrics
- 5. Logistics

But on this research, it is necessary to mentioned that among the 5 main pillars of the Lean Manufacturing Performance rates, this investigation will only explore the Human Capital Organizational perspective. Through an extensive recognition of the global workforce analytics, from a Human Capital Engineering scope.

2.4 Lean Manufacturing Performance, through innovative organizational matters

The Lean Manufacturing Performance presents empirical evidence of a strong relationship between Engineering, Human Capital Innovation productivity enhancement. Where Black and Lynch (1996), stated, that investment in human capital in the "On the Job Training Area" and education are the driven force behind the productivity competitiveness upgrading in the organizational levels. by arguing that HCE raises overall productivity, as the Human Input, to economic upgrades, in terms of physical and economic activity and gained intellectual efforts (Muhamad, 2012).

Figure No 3 Innovation Capacity Index 2010-2011 Clusters

High Income Countries					
Name of	ICI		ICI		
Country	Score	Name of Country	Score		
Sweden	80.3	Portugal	56.7		
Switzerland	78.1	Italy	56.7		
Finland	76.1	Malta	54.6		
United States	74.8	Greece	49.9		
Denmark	74.3	Taiwan	72.5		
Canada	73.6	Israel	67.5		
Netherlands	72.8	Republic of Estonia	60.5		
Luxembourg	72.2	Hungry	56.8		
Republic of					
Korea	72.1	Slovak Republic	56.7		
Norway	72	Cyprus	55.2		
New Zealand	71.3	Republic of Croatia	53.2		
United		Trinidad and			
Kingdom	71.3	Tobago	47.7		
Japan	70.2	Singapore	76.7		
Australia	69.4	Hong Kong	71.4		
Ireland	69.1	Bahrain	57		
Germany	68.9	Qatar	55.9		
Austria	66.7	Oman	51.8		
Belgium	66.1	Kuwait	51.3		
France	65.3	Spain	58.8		
Republic of Slovenia	59.1	United Arabs	58.9		

Sources: Innovation of Development (2010-2011 Report)

Where the High Income countries strongly suggest a high evolution in innovation through HCE enrichment in investigation acknowledgement and the application of the Industries, state of the Art Technology.

Were Suriyani Muhammad, concludes, that Human Capital is a strong Catalyst of Innovation, since, the practice generated by innovation may imply the construction of connections (networking conditions) that involve better understanding, training and support for the continuing preparation process, over a KAIZEN lean Manufacturing implementation (Muhamad, 2012).

3 Human Capital and Lean Manufacturing

3.1 Human Capital Engineering Evidence, as a lean Production Stimuli

Among the most valuable theoretical evidence, we could out stand the Thomas Gilbert work piece, defined as: "Human Competence, Engineering Worthy Performance", in 2004, where the generation of his 3 leisurely theorems: Upon the measurement and Auditing of Human Capital Competence. Where T. Gilbert consolidates and homologates the performance management tools upon the Human Capital Engineering 6 main KPI's (Jamal, 2011), that are disseminated over 17 variables whose main goal, is based on the Employee performance auditing:

Data	Resources	Incentives	
Relevant and Frequent Feedback about the adequacy of Performance	Tools, resources,	Adequate Financial Iniciatives	
The Performance Expectations descriptions	time and materials of work design to	Non- Monetary Initiatives	
Clear and Relevant Guides to Adequate	match the performance needs	Career Development Opportunities	
Performance		Risk Management of Work Performance	
Knowledge	Capacity	Motives	
Systemic Training Design	Flexible Scheduling of Performance	Psychological Assessment towards productivity	
	Prosthesis or Visual Aids	Recruitment of Personnel who match the roles required	
Placement/Feedback	Physical Shaping		
	Adaptation		
	Selection		

Source: Human Competence Engineering Worthy Performance Thomas F. Gilbert, 1978

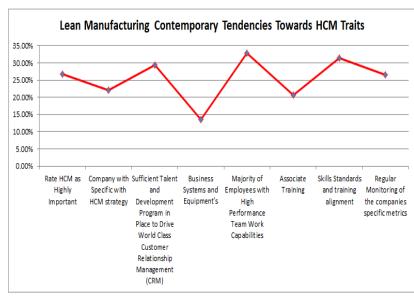
Where parting from the usage of this common goal surveillance tools, one can monitor the individual and collective productivity of their associates, over a specific project, activity or tie period, in a linear progressive manner, thereby, enabling a complete evaluation of the performance curve of each employee or/and operational unit.

Therefore the common use for a Tool of these nature, creates a sequence of positive impacts, who described and categorized Manufacturing Performance Institute and the American Small Manufacturers Coalition, on their 2011 research, defined as: "Next Generation Manufacturing studies", who surveyed and categorized 824 US manufacturers, stating that the new tendency for the companies who have reached the World Class Human Capital Engineering, are more likely to invest in this asset, were at some point of their evolution cycle (even in the manufacturers whose denomination is furthest from world class status), a significant rate of acceptance towards the priorization of the HCE reflects 68% near/at World Class Category vs. 41% furthest to the World Class Denomination (Manufacturing Performance Institute, 2011).

Besides this general overview of the World Class Corporations, the investment on the HCE and its dynamic absorption of the industries new traits, the Next Generation Manufacturing Study, was able to determined that the closest one organizations pace is towards the acquisition of the World Class denomination, the greater the proportion of the investment towards the HCE processes, in order to obtain superior performance levels (revise Table No 1).

Table No 1 World Class Best Human Capital Engineering Best Practices

World Class Strategy and Practices	Furthest From World Class HCM	Near or at World Class HCM
Rate HCM as Highly Important	40.7%	67.5%
Company with Specific with HCM strategy	5.9%	28%
Sufficient Talent and Development Program in Place to Drive World Class Customer Relationship Management (CRM)	9.6%	38.9%


Business Systems and Equipment's	5.2%	18.7%	
Majority of	37.1%		
Employees with		69.9%	
High Performance			
Team Work			
Capabilities			
Associate Training	25.7	46.3	
Skills Standards and	32.8%	64.2%	
training alignment	32.6%		
Regular Monitoring	11.6%	38.2%	
of the companies			
specific metrics			

Source: Next Generation Manufacturing Study, The Manufacturing Performance Institute, 2011

Table No 1, determines the core elements of HCE over the contemporary US World Class Companies, who pursuit continuous growth and quality upgrading schemes, by simply adjusting this 8 performance layers, that describe the World Class HCE Strategies and its time deviations over the 2009-2011 time periods, who clearly demonstrates, that even the new small business manufacturing companies and entrepreneur initiatives, approach the HCE component as an element for the achievement of competitive layers.

Now a days, a common pattern among the new born companies, has drove a great portion of their efforts to support their management standards, into the alignment of this HCE Best Practices to the lean Production Goals, who pursuit the maximization of efficient manufacturing procedures.

Figure No 4 World Class HCE Deviations and Contemporary Tendencies

Source: Next Generation Manufacturing Study, The Manufacturing Performance Institute, 2011

Where the investment effort allocation of the HCE, over the World Class Enterprises, is concentrated over the Multi-Disciplinary Team Capabilities that consumes less resources and increases productivity in a significant pattern, before the Skills and standard training alignments instruments, who require a specific volume of resources for it to be properly developed.

On the other hand, we could interpret that among the HCE features, the technological Business System, tools and Equipment, who procure the management automation, present the least investment source lines, among the World Class Manufacturers, from the 2009-2011 periods.

Parallel to the HCE best practices tracking and World contemporary tendencies. the Class Manufacturers, have consistently benchmark their internal affairs over the effectiveness of the talent and development programs. Through the exploration of theoretical evidence based upon the Next Generation Manufacturing Study in 2011, by the Manufacturing Performance Institute, we can firmly state, that around 25% of the studied firms, have invested a significant amount of resources, on the talented, development programs and operation enhancement, since their internal benchmarking has diagnose that 61% of these firms report sufficient talent on their working environments (Manufacturing Performance Institute, 2011).

3.2 Human Capital Engineering and Lean Production Achievement and Proportionality.

The following unit of this research takes into account, the Lean Manufacturing current tendencies, stimulated by the HCE different methodologies and approaches, whose articulation, proposes the quantification of the benefits obtained through its usage.

From the evolution of both concepts (HCE and Lean Production Manufacturing), we may perceive that the great success of this instruments, in respect to productivity, is due to the business acceleration cycles that are stimulated by the strategic talent deployment over specific tasks. The recent theoretical background suggests that 78% of the manufacturers recognizes the importance of human capital acquisition, development and retention. Unfortunately, only 58% of all manufacturers report that systems and equipment meet

their current requirements, which increases the investment needs to balance the Human Skills with the technological components (Manufacturing Performance Institute, 2011).

CONCLUSIONS APPROACHED THROUGH THE EMPIRICAL EVIDENCE REVISION

The success of a business strategy, towards a Human Capital organizational approach is defined as a whole, rather than being a specific manufacturing instrument. Through the abilities of a business that lies on pull factors and internal preparedness, the development required is focused on Human Capital Engineering, in combination with new era technological tools that support the contemporary market demands and volatile requirements.

Now a days the small business corporations achievement of a world class denomination, is a complex goal to obtain, but the with help of the proper HCE accelerators, the companies metabolism can be boosted, thereby, extending their business cycles potentialities and their World Class categorization possibilities.

Finally, the HCE, has proven to be a World Class Manufacturing tendency, that explores the TPS potentialities, where the Lean Manufacturing practices are taking to the limit, over the employee individual and collective performances. Thereby confirming that the articulation of the variables defined as:

A: The Contemporary Human Capital Engineering Techniques.

B: The Lean Manufacturing Organizational Best Practices (LMOBP), over the various Latin American productive sectors.

Reflects a strong dependency over each other, where the LMOBP variable, enhances the performance of the HCE KPI'S, and therefore, upgrades the new techniques that approach the World Class companies strategic modules. On the other, the significant evidence of the positive impacts generated by the HCE's, over the resource maximization of the automated World Class Industries processes, leads this particular corporations to the Lean Manufacturing adoption, with a strict priority over the technological innovative traits.

CITATIONS AND REFERENCE SECTION

- Brookman, M. (2006). *Human Capital Engineering*. Indian Creek Park way, Oregon, US: Alliance Training and Consulting Group.
- Corbett, S. (2003). Beyond Manufacturing the Evolution of Lean Production. Seattle, US: The Mckensey Quarterly.
- Cornachione, E. (June 2010). Investing in Human Capital: Integrating Intellectual Architecture and Utility Theory. Sao Paulo, Brazil: University of Sao Paulo, Colledge of Business and Economics.
- Dailey, K. (2003). *The Lean Manufacturing Pocket Book*. Nebraska, US: DW Publishing Co.
- Dettmer, W. (2011). Beyond Lean Manufacturing:

 Combining Lean and the Theory of

 Constraints for Higher Performance. Port

 Angeles US, Portland: Goal Systems

 International.
- Heike, H. (2002). *The Roles of Human Capital Competences and their Payoff*. Maastrich Germany: Research Centre for Education and Labor Market.
- Jamal, W. (2011). Impact of Human Capital Management in Organizational Performance. Islamabad: University of Islamabad Pakistan.
- LLP, D. C. (2011). *Human Consulting Trends:* Revolution/Evolution. US, Omaha: Touche Tohmatsu.
- Manufacturing Performance Institute, M. (2011).

 Next Generation Manufacturing. US

 Wisconsin: American Small Manufacturing

 Coalition Editorial.
- Muhamad, S. (2012). Innovative Capacity, Human Capital and Its Contribution to Economic Development in Malaysia. Terengganu: University of Malaysia, Terengganu.
- Ohno, T. (1998). Toyota Production System (TPS)

 Beyond Large Scale Production. Chicago:
 Clearense Center Databases.
- Performance, B. L. (2002). *H. William Dettmer*. Port Angels, CA, US: Goal System International.
- Quesada, C. E. (1995). *Metodos para medir el Rendimiento*. Mexico Distrito Federal,

- Mexico: Revisa Tecnica de la Empresa de Telecomunicaciones de Cuba.
- Rockford, C. G. (1999). *Lean Manufacturing*. San Francisco, CA, US: Posted on the web page, http://rockfordconsulting.com/lean-manufacturing.htm.
- Schultz, T. (1961). *Investment in Human Capital*.
 South Dakota, US: American Economic Review
- Simkovic, M. (2012). *Risk based student loans*. US: www.ssrn.com/abstract=1941070.

Authorization and Disclaimer

Jesus David Argueta Moreno authorizes LACCEI to publish the paper in the conference proceedings. Neither LACCEI nor the editors are responsible either for the content or for the implications of what is expressed in the paper.

ACKNOWLEDGEMENT:

Through this document, I wish to express my sincere gratitude to the US Manufacturing Performance Institute, for the Information provided, towards the contemporary usage, benefits and impacts of the Human Capital Engineering over the Lean Manufacturing Performance enhancement, as well as The Institute of Economics and Social Science Investigations of the National Autonomous University of Honduras (IIES-UNAH), for the supply of the tools, equipment and assessment, towards the development of this investigation.

