
Cryptographic Methods for Deciphering/Identifying
Ciphers in MATLAB

1Christian Pinto, BTech, 2Harrison Carranza, MIS
1The New York City College of Technology – CUNY, USA, christian.pinto@mail.citytech.cuny.edu

2Marist College, USA, harrison.carranza2@marist.edu

Mentor: Aparicio Carranza, PhD
The New York City College of Technology – CUNY, USA, acarranza@citytech.cuny.edu

Abstract – Cryptographic methods are used worldwide to keep
information safe. Monoalphabetic, Polyalphabetic or Polygraphic
substitutions, etc., are methods that can make the information
secure. Once encrypted, the receiver should be able to understand
the message with a given key. If there is no key, the formula
called Index of Coincidence (IC) can help deciphering. It narrows
down the search for the method used with the result obtained
from the IC formula. Using the MATLAB IDE, we will implement
the ciphers mentioned above and along with the IC formula,
determine the cipher if no key is present.

Keywords – Cipher, Decryption, Encryption, Monoalphabetic,
Polyalphabetic, Polygraphic

I. INTRODUCTION

Sending important information can be risky for many
different reasons. Now a days, communications can be
intercepted and if not secure, the interceptor can see
everything you sent. This is where cryptology comes in.
Cryptology is the study of codes and ciphers. It allows us to
hide a message and send it without worries. As defined by
David Kahn, "Cryptology is protection, it is to that extension
of modern man – communications - what the carapace is to
the turtle, ink to the squid, camouflage to the chameleon" [1].
When cryptography first started, there were only simple
ciphers but no one understood what the messages meant
because it was new [2]. Now cryptography has gotten so
complex that even if someone were to get a hold of the
message, they will not necessarily understand it. When
talking about cryptography, it is important to understand how
it works. Cryptography has two parts: ciphering/encryption
and deciphering/decryption. Encryption is taking a message
and disguising the message with any cryptographic method.
Decryption is the opposite of encryption where you go from
the hidden message to the original message. Each method
used has a different level of security.

Monoalphabetic, Polyalphabetic, Polygraphic Ciphers,
and public key ciphers are the main groups of ciphers. In this
paper we will be focusing mainly on Monoalphabetic,
Polyalphabetic, and Polygraphic Ciphers. Within these
general forms, there are different methods within each one.
Monoalphabetic contains the Additive Cipher, Multiplicative
Cipher, and Affine Cipher. The polygraphic cipher contains
the Vigenere Square and the Polyalphabetic contains the Hill
cipher. With the knowledge of cryptography, we have created

a program that will decipher messages as long as the user
provides the key. Another part of the program can identify the
cipher of a message. This part is still a work in progress. In
order to understand how the program works, understanding
how deciphering messages is the first step.

II. DECIPHERING CIPHERTEXT

When you decipher messages, you will need to have the
key used to encrypt them. This is important because without it
you cannot get the original message sent. Since there are
multiple methods, we will take it one by one starting with the
Caesar (additive) cipher.

A. Additive/Caesar Cipher

In order to decrypt messages, you will take the additive
inverse with mod(26). Let us take the example, “kl pb qdph
lv dolfh” and using the key of 19 to decipher the message.
First we need to get the additive inverse of 19 which is -19
mod 26. The result from this is 7 mod 26, which we will use
to decrypt. With this key, we add it to the Ciphertext position
and come back to the plaintext message.

Table 1 - Inverse Additive Cipher
Ciphertext A b f r

Position 1 2 6 18
Plaintext H i m y
Position 8 9 13 25

If done mathematically:

1 + 7(mod 26) = 8mod(26) = H
2+ 7(mod 26) = 9mod(26) = i

6 + 7(mod 26) = 13mod(26) = m
18 + 7(mod 26) =25mod(26) = y

When we decipher the entire message we end up with “Hi
my name is Alice”. For this reason, the additive cipher is the
least secure cipher. Someone can find the key used sooner or
later.

B. Multiplicative Cipher

The multiplicative cipher works in the same manner.
Once you have the key, take the multiplicative inverse and

14th LACCEI Annual International Conference: “Engineering Innovations for Global Sustainability”
July 20­22, 2016, San Jose, Costa Rica 1

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2016.1.2.069
ISBN: 978-0-98228996-9-3
ISSN: 2414-6390

mailto:acarranza@citytech.cuny.edu
mailto:acarranza@citytech.cuny.edu
mailto:acarranza@citytech.cuny.edu

you end up with the plaintext message. Once you have the key
you would multiply the cipher text by the inverse key k--

1mod(26). The inverse would be a number that makes this
statement true

A*K-1 = 1 mod (26) (1)

The easy way to decipher the message with the key would
be to look up the table with all the inverses. In the additive
decipher, we used the key 11 to encipher the message. Now
let us use that key to decipher the message. According to
Table 1, the inverse of 11 is 19 [3].

Table 1 - Multiplicative inverse chart

Now let us decipher the message “Ju mo xkmc ua
kbugc” with the inverse key 19. To decrypt the cipher text we
multiply each cipher text by the multiplicative inverse and use
mod (26).

C1 = 10 * 19mod(26) = 190 mod(26) = 8 = h
C2 = 21 * 19mod(26) = 399 mod(26) = 9 = i

C3 = 13 * 19mod(26) = 247 mod(26) = 13 = m
C4 = 15 * 19mod(26) = 285 mod(26) = 25 = y

Table 2- Multiplicative inverse applied
Ciphertext j u m o

Position 10 21 13 15
Plaintext H i m Y
Position 8 9 13 25

As you go on, you will end up back at the message “Hi
my name is Alice”. Just like with the additive cipher, the
person can brute force and find the multiplicative inverse.
They will eventually find the right key and decipher the
message. The next cipher will be the Affine cipher which is a
bit more secure.

C. Affine Cipher

In order to decipher this message, you will need the
multiplicative key and the additive key. The first step is to
take multiplicative inverse of the key and apply it to the
ciphertext. Once that is done, you will need to apply the
additive inverse to the message to get the plaintext [2]. Let us
take the example, “Hello world”. If you encrypt it using the
additive key of 2 and multiplicative key of 3, we will end up
with the message:

After additive key applied
“jgnnq yqtnf”

After multiplicative key
“duppy wyhpr”

Now that we know the ciphertext, we can apply the
inverse to get back to the original formula. We will do so by

first applying the multiplicative key. Since we are using the
multiplicative key of 3 we know that the inverse is 9 from
Table 1.

Table 3 - Multiplicative Inverse Key Applied
Cipherttext d u p P

Position 4 21 16 16
Ciphertext

(Multiplicative inverse)
j g n n

Position 10 7 14 14

As observed in Table 3, we are getting back to the additive
ciphertext when its all done. Once finished, you end up with,
“jgnnq yqtnf” as it is expected. Now, if we apply the additive
inverse of 2, which is 24, we get the following:

Table 4 - Additive Inverse Key applied
Ciphertext

(Multiplticative inverse)
J g n n

Position 10 7 14 14
Plaintext h e l l
Position 8 5 12 12

Table 4 is the result when finished, we get the original
message “Hello world”. We can also use the following
formula to decrypt the message where s is the multiplicative
key and r is the additive key.

 p = r-1 + (s-1 *c) (mod 26) (2)

If we apply the key from the example, we get the
following:

C1 = 24+(9* 4)(mod26) = 24+(36)mod(26) = 60mod(26) =
8 = h

C2 =24+(9*21)(mod26)= 24+(189)mod(26) = 213mod(26) =
5 = e

C3 = 24+(9*16)(mod26) = 24+(144)mod(26) = 168mod(26)
= 12 = k

This cipher is a bit more secure because if someone tries
to brute force this with an additive decipher/multiplicative
decipher, they will get nothing understandable. They would
have to do each possible combination, which would take a
long time. This cipher is not completely safe since it is a
monoalphabetic cipher, then, let us take a look at the
polyalphabetic cipher Vigenere square.

D. Vigenere Square

When you encrypt the message you will use the table seen
in Figure 1. You use the top row for the plaintext and the left
column for the keyword. Where the two intersect is your
ciphertext. Deciphering works in a different manner. You will
put your keyword on the top row and scroll down until you
reach the letter of the Ciphertext and the letter on the left
column is your plaintext. For example, if we decrypt the
message, “pqvc vw fcgb rmw” and use the keyword “city”,
we will get the result seen in Figure 1.

14th LACCEI Annual International Conference: “Engineering Innovations for Global Sustainability”
July 20­22, 2016, San Jose, Costa Rica 2

Figure 1: Deciphering Vigenere square

Table 5 - Deciphering of the Vigenere Square
Ciphertext p q V
Keyword c I t
Plaintext n i c

When you continue all the way you will end up with the
message “Nice to meet you”. This cipher is pretty secure
because without the key word, you will get nowhere. There
are ways to determine the length of the keyword but it will
not assist much because of the many different combinations of
letters that you can put together. The next cipher we will look
at is Hill’s System.

E. Hills system

This cipher is typically one of the longer ones to decipher
because you can only do two letters at a time and each time
perform a matrix multiplication. When we encrypted, we use
a 2 x 2 matrix. We will do the same when we decipher. The
first step is to get the inverse of the 2 x 2 matrix. Next, you
will multiply that matrix to the inverse of ad – bc
(determinant). This will give us the inverse matrix that we
will use to multiply later on.

 =

Determinant = ad – (-b * -c)

First find the modular inverse of the determinant. Similar
to finding the multiplicative inverse.

(() * modular inverse of determinant) mod26

= Inverse matrix

Now that we have the inverse matrix, the formula to
compute the plaintext is the following where p is the plaintext
and c is the ciphertext:

 = *

mod(26)

(3)

Let’s use an example encrypted using hills system. The
encrypted message is “fcuxfwgvuiyvob” and the plaintext is
“Nice to meet you”. When encrypted, we used the key a = 9,
b = 4, c = 5, and d = 7.

The first step is to apply the inverse function to the
matrix:

 =

 =

Now we compute the determinant:

Ad – bc = (9*7) – (-4*-5) = 63 – 20 = 43

To find the modular inverse you can use an online
calculator to make the process faster. For this example, the
inverse of 43 is 23. Now, we multiply the inverse of the
determinant with the inverse matrix.

 * 23 mod(26) =

Now that we have our inverse matrix, we can apply it to
the ciphertext “fcuxfwgvuiyvob” and get the plaintext.

 = * = =

 = * = =

When we continue all the way, we will get “Nice to meet
you”. When deciphered, there will be an extra letter at the
end because the message was odd numbered. We need an even
number in order to do the matrix multiplication. The extra
letter was taken out so the message made sense. This is
another secure cipher because of the key. It is a bit more
limited than the Vigenere cipher because the key has to be
prime to the modulus. The last two methods are much safer
than monoalphabetic ciphers. Now that we know how to
decrypt a messages, let us see the steps to analyze a message
without any knowledge of the key which is called
cryptanalysis.

III. CRYPTANALYSIS

14th LACCEI Annual International Conference: “Engineering Innovations for Global Sustainability”
July 20­22, 2016, San Jose, Costa Rica 3

Cryptanalysis is when we take an encrypted message
and analyze it to see any patterns. This is what people do
when they intercept a message. This is used not only in a bad
way. It can also help us to find flaws in an encryption method
and obtain new ways to make things more secure. The way to
analyze a message is by using a frequency table. A frequency
table consists of every occurrence of a letter in a message. By
knowing the most frequent used letter in the ciphertext, you
can compare it with the most used letter in English. In Figure
2, we can see the frequency of the most used English letters.

Figure 2 - Most frequently used English letters

As we can see, the letter “e” is the most used letter in
English. Knowing the most used letter in a Ciphertext, you
can map that letter with the letter “e”. This would typically
work well with monoalphabetic ciphers because there can
only be one letter that corresponds to another letter. There are
also charts for the frequency of digraphs and trigraphs as seen
in Figure 3.

Figure 3 - Frequency table for digraphs and trigraphs

These tables are mainly used for higher level ciphers
such as Hills system or the Vigenere cipher. The question is
what do we do with this information?. There is a formula
called the Index of Coincidence (IC) that can possibly
determine whether or not the cipher is monoalphabetic or not.
The Index of Coincidence formula is the following:

(4)

In this formula, ni is the corresponding letter in the

In this formula, n i is the corresponding letter in the
alphabet. For example, N1 = “A”, N2 = “B” and so on. N is
equal to the length of the message. Then we take the sum and
get a result depending on the type of cipher that has been
used. When we get the results there are two options. If the
result is close to .065, then the message has probably been
encrypted with a monoalphabetic cipher. If the result is less
than .065, it has probably been encrypted with a higher level
cipher. Although this result is not all so certain, it helps
narrow down your search. For example, let us take the
message “Welcome to the poster session”. If we use a basic
additive cipher and shift it by 6. We will get the following
message, “ckriuskzuznkvuyzkxykyyout”. If we create a
frequency table we will get the following:

Table 11: Frequency Table for message
Letter c i k n o r s t u v

Frequency 1 1 5 1 1 1 1 1 4 1

Table 12: Frequency table continued
Letter x y z

Frequency 1 4 3

From this table we can see that k is the most frequent
letter. When we use the IC formula the result is: 0.0833330.
Since it is higher than 0.065, it would mean it is a
monoalphabetic cipher which is correct. Since k is the most
frequent letter in the message, we can assume it is the letter e
in the plaintext. We know that the position of e is 5 and k is
11. In order to get from e to k we must shift by 6. Since, we
are decrypting the message we would apply the inverse
additive key which is -6 and we end up with the message,
“Welcome to the poster session”. If it did not work, we
would have to map k with the next most frequent English
letter which would be “t” and use the same method or it may
not be an additive cipher.

Now if we end up getting the result that is less than .065,
we will need to determine the length of the keyword/key.
There is a test called the Kasiski Test that can help figure out
the length for the Vigenere Square which states, “if a string of
characters appears repeatedly in a polyalphabetic ciphertext
message, it is possible (though not certain), that the distance
between the occurrences is a multiple of the length of the
keyword” [2].

For this test, you will need to keep a chart with the
repeated string, the position of the first letter in the string, the
distance of each of the occurring stings, and the prime
factorization of the distance. With the third column, you can
make an assumption that it is a multiple of the keyword [2].
An example of this is shown in Figure 4.

Figure 4 - Chart for the Kasiski Test

14th LACCEI Annual International Conference: “Engineering Innovations for Global Sustainability”
July 20­22, 2016, San Jose, Costa Rica 4

With this test, it can help us to come to a conclusion on

the length. We can also use the following formula to calculate
the length of the keyword which is:

(5)

In the above formula, n is the variable for the length of
the message. If we apply this formula and say the Kasiski test
led you to the assumption that the multiple of the keyword is
7 and you get 15.7 from the result, most likely the keyword
length is 14.

This same exact cryptanalysis and decryption process is
what we have implemented. The cryptanalysis portion is still
being developed.

IV. IMPLEMENTATION

For the implementation of our cryptographic solution in
MATLAB, we started with the monoalphabetic ciphers.
Before starting with our MATLAB implementation, we
needed to learn about its some important features. When we
assign to a variable a character, it will return you its ASCII
code.

As it is seen above, the letter “e” corresponds to the
decimal number 101 on the ASCII table which can be seen in
the ASCII table in Figure 5.

Figure 5 - Complete ASCII table

 We first began with the additive cipher and worked our
way up to the Hill’s cipher which was last. We will start off
with the first part of the program which is when we know the
key.

Part 1

Additive Cipher

This cipher is fairly straightforward as you know from the
previous sections. The first step is to get the user message as a
string. The next step is to get the key from the user. Once we
have the key, we will need to take its additive inverse and
apply it to the message which is what we did.

IM = char(rem(IM-i-96+26,26)+96);

In this line, IM stands for the input message, rem stands
for remainder which is similar to mod, and char converts a
number to a letter based on their ACII code. How that line
works is it takes the input message where each character is
converted to decimal, and then subtract the key and subtract
96. We will then add 26 to it to be able to get the mod 26
afterwards with the rem function. Once we get the remainder,
add 96 back to the remainder so we can return to the original
position on the ASCII table. Once done, we convert it back
into characters using char [4].

Multiplicative Cipher

We apply the same basic idea with the multiplicative
cipher. We take the user's input and then get its inverse key
which we will then use it to multiply with the input message
and get its corresponding letter. To get the multiplicative
inverse or modular inverse, we used the following code:

 [d,a,b] = gcd(k,26);
 in = mod(a,26);

g = gcd(in,26);

With this result, we can calculate the inverse of the
multiplicative key. Once we get that value, we test it if it is
prime to the modulus which in this case will be 26. If the
value does end up being 1, we will use the same method that
we used for the additive cipher. We need to take the input
message and subtract it by 96 then multiply it by the inverse
key. Once we get that result, we use the mod function to
calculate the modulus of the value and then add 96. Once we
get the ASCII value we use the char command to convert it to
letters.

IM = char(mod((IM – 96)* in, 26) + 96);

Affine Cipher

The first step is to get the multiplicative key and the
additive key from the user. Using the key, we implement what
we did in the previous two other programs. As we know from
decrypting, you apply the multiplicative key then the additive
key. We apply the following code to find the multiplicative
inverse:

 [d,a,b] = gcd(k,26);
 in = mod(a,26);

Then we check if the gcd of the inverse and the modular is 1
g = gcd(in,26);

14th LACCEI Annual International Conference: “Engineering Innovations for Global Sustainability”
July 20­22, 2016, San Jose, Costa Rica 5

If the gcd is 1, then we will be able to decipher the message.
We put together multiplicative cipher then the additive cipher
code.

IM = char(mod((IM – 96)* in, 26) + 96);
IM = char(rem(IM-i-96+26,26)+96);

Vigenere Square

The first step is to take in the user’s keyword as a string.
The second step is to convert the strings from its ASCII code
to the position 1 – 26.

 Key = key – 96;
 IM = IM – 96;

The next step is to get the key index. This is done by
creating an array from 0 to the length of the input message
and subtract the length by one. Then you will take the length
of the keyword as the modulus. You will add one to that result
so it is between one and length of the keyword [5].

Keyindex = mod(0: (length(IM) – 1) , length(key)) +1;

Once we have the key index, we will use it to identify the
position of the keyword which will repeat throughout the
array [5].

K = key(keyword);
Disp(k);

If we display the result we will get the following:

Figure 6 - ACII Position for key

As you can see after every four slots it will repeat itself.
This is what we do when we decipher. We repeat the keyword
each time we reach the end of the keyword. Now once we
have this, the next step is to subtract the input message from
the keyword or “k” in this case. We will subtract the keyword
position from the input position.

Plaintext = IM – k;

 Now if the result is less than 0, you will need to add 26
to it. This will let it return to its position. From time to time,
the result will be less than 0. To correct the positions we do
the following:

index = plaintext < 0;
 plaintext(index) = plaintext(index) + 26;

The index line lets the program find the position of
where the plaintext is less than 0. The following line adds 26

to the corresponding position. This corrects the position. The
last step in this program is to convert it from Ciphertext to
plaintext by using the char command after adding 96 to the
Ciphertext.

Plaintext = char(plaintext + 96);

Hills System

The first step is to analyze the input to see if the length of
the message is even. If it is not just add an extra letter in the
end. Now once we have an even input, the next step is to
change the array into a 2 x (length of message divided by 2)
matrix. This is done by the reshape command in MATLAB.

IM = reshape(IM,2,Size/2);

 This is needed so you can perform the matrix
multiplication. You cannot multiple a 2 x 2 with a 1 x (length
of message). As usual, you will need to convert it from its
ASCII code to 1 – 26. We need to get the key and put it in a 2
x 2 array. Once we have the matrix, we need to take the
inverse.

Inm = [d –b;-c a];

Once done, the next step is to get the determinant of the
matrix.

X = (a*d)-(b*c);

Next, we need to find the modular inverse of the
determinant. Now if the inverse is prime to 26, then you will
multiply the modular inverse with the inverse matrix. The
second to final step is to multiply the inverse matrix with the
input message array. This will give you the result but first you
will need to reshape it again so when you display it, it will be
correct and in order. We turn it back into a single row and to
its original length with the following:

IM = reshape(y,1,Size);

Once that is done the final step is to convert it back with
char. Now we will see how to implement the cryptanalysis.

Part 2

In this part of the program we will implement the IC
formula and the frequency table to examine an input message.
First you will get the users input. The next step is to create a
table which holds all the occurrences of each letter. This can
be done in different ways but we did the following:

A = zeros(1, 26);
for i = 1:Size
 for j = 1:26

 A(j);
 end

 if(IM(i) == 'a')
 A(1) = A(1)+1;

14th LACCEI Annual International Conference: “Engineering Innovations for Global Sustainability”
July 20­22, 2016, San Jose, Costa Rica 6

 End
(b – z)

end

For each iteration, the corresponding letter will increase
by 1. Once we have this, we implement the IC formula to
determine the whether it is monoalphabetic or another higher
level cipher. This can be done by using the sum() function in
MATLAB.

sum((A(k).*(A(k)-1))/(Size*(Size - 1)));

 If the result states it’s a monoalphabetic cipher, we will
test each cipher. The same will happen with the higher level
ciphers. For now we will only work with monoalphabetic
ciphers. Now if the value is close to 0.065, we will run tests
from the first monoalphabetic cipher which is the additive
and then to the multiplicative. Now we will pass the values of
the matrix A, the input message (IM) and the Size of the
message. Now we will take the array A and determine which
value is the most frequent. Once we have the index value, we
will subtract e (5) – I (index of most frequent letter value (1-
26)). This will give us the key if it was an additive cipher. We
would apply mod(26) just in case it wasn’t from 1 – 26. Now
we will apply this key, r:

IM = char(mod(IM + r - 96,26)+96);

To check the output, we use a function called spellcheck
which will check the spelling. This is as far as we got
implementing the cryptanalysis. The following will be the
results of the program.

V. RESULTS

As mentioned before, this program has two parts. The
first part is where the user enters the key and the other is
where the user just inputs a message

Part 1

Figure 7 - Main menu decryption with key

Once here, you can choose which type of cipher you would
like to decipher. We will go through each one and see if the
result is correct. We will start with the monoalphabetic
ciphers first.

Figure 8 - Monoalphabetic Menu

If the user inputs 1, it will take them to the
Monoalphabetic menu. It will prompt them for the message
and then the key. Let’s begin with the additive cipher.

Additive/ Caeser Cipher

We will use the Ciphertext from the example we used
before “Ab fr gtfx bl Tebvx” with the key of 19.

Figure 9 - Output from Additive Program

Although the letters aren’t separated, you can still see the
original message.

Multiplicative Cipher

Let’s take the example, “Ju mo xkmc ua kbugc”, with the
multiplicative key of 11:

Figure 10 - Multiplicative Ciphertext Deciphered

Affine Cipher

This part takes in the inputs for the multiplicative key and
additive key. We will use the example “gqkthmr yc dmffmz”
with the multiplicative key of 3 and additive key of 8.

Figure 11 - Affine Deciphered

For this cipher we used a different message which was
“Complex is better”. For the next section, the user would need
to input 2 in the main menu to get to the Vigenere Square.

Vigenere Square

We will use the Ciphertext message, “pqvc vwfc gbrm w”
and the keyword “city” to decipher the message.

14th LACCEI Annual International Conference: “Engineering Innovations for Global Sustainability”
July 20­22, 2016, San Jose, Costa Rica 7

Figure 12 - Vigenere Square Program

The outputs you see displayed on the screen are the
position of the keyword letters. This time our message was
“Nice to meet you”.

Hills System

Once the user inputs the message, it will determine if it is
even or odd. If it is even it will decipher, else you will need to
add an extra letter. Let’s take the message “fcuxfwgvuiyvob”
with the key a = 9, b = 4, c = 5, d = 7. For this situation, we
removed letter at the end to see what happened if it was odd.

Figure 13 - Situation where message is odd

Now when I put back the last letter and the same key this
is the result I get.

Figure 14 - Even input and output

As you can see the program gave me the correct output
“Nice to meet you” even though it has the extra letter at the
end. When situations like these happen, you can ignore the
last letter.

Part 2

In the main menu, if you entered “N” it will perform the
cryptanalysis. The example we will use is a monoalphabetic
cipher. We took the message, “Welcome to the poster session”
and used the additive key of 6 to encrypt it. Our output is,
“ckriuskzuznkvuyzkxykyyout”. We will use this example for
our input message in our program.

The first cipher it will test is the additive cipher. If we
input the cipher from above, our output will be the following:

Figure 15 - Frequency Table/ IC formula result

For the spellcheck function, 1 means it was spelled
correctly and 0 means it’s not. Now if it was a messaged
encrypted with a multiplicative, the first result would be
wrong and move on to the next cipher. To show this, let’s take
the example, “Welcome to the poster session”, and apply a
multiplicative key of 3 to the message,
“qojismohshxovsehobeoeeasp”. If we input this to the
program, we won’t get an output, but we can see it move on
to the next cipher. This is because we haven’t fully completed
this part of the program.

Figure 16 - Output from multiplicative program

Since it hasn’t been completed it can’t determine if a
multiplicative cipher was used. This is what we plan to
accomplish in the future.

VI. FUTURE RESEARCH

We were able to implement deciphering messages in
MATLAB. As of right now we have the additive cipher
implemented but we would like to continue implementing
cryptanalysis to determine the rest of the ciphers. A conflict
with this is when you get to the higher level ciphers where the
key could be anything like the Vigenere Square and Hills
Cipher.

VII. CONCLUSION

We successfully implemented the decrypting methods:
Additive, Multiplicative, Affine, Vigenere Square, and Hills
system using MATLAB. If you input the correct key, it will

14th LACCEI Annual International Conference: “Engineering Innovations for Global Sustainability”
July 20­22, 2016, San Jose, Costa Rica 8

display the correct output. With our knowledge, we can
continue going further then just decrypting with a key.

REFERENCES

[1] R. Spillman, "Introduction to cryptology," in Classical and
ContemporaryCryptology, NJ, Pearson,2004,ch 1. sec 1.0 – 1.9, pp.1 -
12.

[2] R. Lewand, "Preface,"in Cryptological Mathematics, Washington D.C,
MAA, 200, ch 0, pp. xi.

[3] C. Christensen,”Cryptography of Multiplicative Ciphers”, NKU, Highland
Heights, KY, 2006.

[4] H. Boas.(2005,April 5).Introduction to Matlab[Online]. Avaliable:
http://www.math.tamu.edu/~boas/courses/math696/matlab-
introduction.html.

[5] T. Booher.(2014, September 13).Cryptography[Online].Available:
http://www.theboohers.org/cryptography/

[6] V.Neale.(2012 September).An Introduction to Modular
Arithmetic[Online]. Available: http://nrich.maths.org/4350

[7] D. Arnold.(1996, September 7).Deciphering Hill Ciphers [Online.
Available:
http://msemac.redwoods.edu/~darnold/math45/Activities/HillCiphers/decip
her.pdf

[8] Matlab Programming Fundamentals, MathWorks, [Online] September
2015, https://www.mathworks.com/help/pdf_doc/matlab/matlab_prog.pdf
(Accessed: 5 October 2015)

[9] G.Kessler.(2015 Decemeber 5).An Overview of Cryptography[Online].
Available: http://www.garykessler.net/library/crypto.html

[10] Index of Coincidence, Thonky, [Online] 2015,Available:
http://www.thonky.com/kryptos/index-of-coincidence (Accessed: 4
November 2015).

[11] Everything You Need to Know About Modular Arithmetic, Cornell,
[Online] 2006, http://www.math.cornell.edu/~morris/135/mod.pdf
(Accessed: 12 December 2015.

14th LACCEI Annual International Conference: “Engineering Innovations for Global Sustainability”
July 20­22, 2016, San Jose, Costa Rica 9

http://www.math.cornell.edu/~morris/135/mod.pdf
https://www.mathworks.com/help/pdf_doc/matlab/matlab_prog.pdf

	I. Introduction
	II. Deciphering Ciphertext
	A. Additive/Caesar Cipher
	B. Multiplicative Cipher
	C. Affine Cipher
	E. Hills system

	III. Cryptanalysis
	IV. Implementation
	Additive Cipher
	Multiplicative Cipher
	Affine Cipher
	Vigenere Square
	Hills System

	V. Results
	Additive/ Caeser Cipher
	Multiplicative Cipher
	Affine Cipher
	Vigenere Square
	Hills System

	VI. Future research
	VII. Conclusion
	References

