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Abstract  –  Cryptographic  methods  are  used  worldwide  to  keep
information safe. Monoalphabetic, Polyalphabetic or Polygraphic
substitutions,  etc.,  are  methods  that  can  make  the  information
secure. Once encrypted, the receiver should be able to understand
the  message  with  a  given  key.  If  there  is  no  key,  the  formula
called Index of Coincidence (IC) can help deciphering. It narrows
down the  search  for  the  method  used  with  the  result  obtained
from the IC formula. Using the MATLAB IDE, we will implement
the  ciphers  mentioned  above  and  along  with  the  IC  formula,
determine the cipher if no key is present.
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I.  INTRODUCTION

Sending  important  information  can  be  risky  for  many
different  reasons.  Now  a  days,  communications  can  be
intercepted  and  if  not  secure,  the  interceptor  can  see
everything  you  sent.  This  is  where  cryptology  comes  in.
Cryptology is the study of codes and ciphers. It allows us to
hide a message and  send it  without  worries.  As defined by
David Kahn, "Cryptology is protection, it is to that extension
of modern man – communications - what the carapace is to
the turtle, ink to the squid, camouflage to the chameleon" [1].
When  cryptography  first  started,  there  were  only  simple
ciphers  but  no  one  understood  what  the  messages  meant
because  it  was  new  [2].  Now cryptography  has  gotten  so
complex  that  even  if  someone  were  to  get  a  hold  of  the
message,  they  will  not  necessarily  understand  it.  When
talking about cryptography, it is important to understand how
it  works.  Cryptography has  two parts:  ciphering/encryption
and  deciphering/decryption.  Encryption is taking a message
and disguising the message with any cryptographic method.
Decryption is the opposite of encryption where you go from
the  hidden  message  to the  original  message.  Each  method
used has a different level of security. 

Monoalphabetic,  Polyalphabetic,  Polygraphic  Ciphers,
and public key ciphers are the main groups of ciphers. In this
paper  we  will  be  focusing  mainly  on  Monoalphabetic,
Polyalphabetic,  and  Polygraphic  Ciphers.  Within  these
general  forms, there are different  methods within  each one.
Monoalphabetic contains the Additive Cipher,  Multiplicative
Cipher,  and  Affine Cipher.  The polygraphic cipher  contains
the Vigenere Square and the Polyalphabetic contains the Hill
cipher. With the knowledge of cryptography, we have created

a program  that  will  decipher  messages as  long as  the  user
provides the key. Another part of the program can identify the
cipher of a message. This part is still a work in progress. In
order  to understand  how the program works, understanding
how deciphering messages is the first step. 

II. DECIPHERING CIPHERTEXT

When you decipher messages, you will need to have the
key used to encrypt them. This is important because without it
you cannot  get  the  original  message  sent.  Since  there  are
multiple methods, we will take it one by one starting with the
Caesar (additive) cipher. 

A. Additive/Caesar Cipher

In  order  to decrypt messages,  you will  take the additive
inverse with mod(26). Let us take the example, “kl pb qdph
lv dolfh” and using the key of 19 to decipher  the message.
First we need to get the additive inverse of 19 which is -19
mod 26. The result from this is 7 mod 26, which we will use
to decrypt. With this key, we add it to the Ciphertext position
and come back to the plaintext message.

Table 1 - Inverse Additive Cipher
Ciphertext A b f r

Position 1 2 6 18
Plaintext H i m y
Position 8 9 13 25

If done mathematically: 

1 + 7(mod 26) = 8mod(26) = H
2+ 7(mod 26) = 9mod(26)  = i

6 + 7(mod 26) = 13mod(26) = m
18 + 7(mod 26) =25mod(26) = y

When we decipher the entire message we end up with “Hi
my name is Alice”. For this reason, the additive cipher is the
least secure cipher. Someone can find the key used sooner or
later. 

B. Multiplicative Cipher

The  multiplicative  cipher  works  in  the  same  manner.
Once you have the  key, take the multiplicative inverse and
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you end up with the plaintext message. Once you have the key
you would multiply the cipher  text  by the inverse key   k--

1mod(26).  The  inverse  would be a  number  that  makes  this
statement true 

A*K-1 = 1 mod (26)                                (1)

The easy way to decipher the message with the key would
be to look up the table with all the inverses. In the additive
decipher,  we used the key 11 to encipher the message. Now
let  us  use  that  key to  decipher  the  message.  According  to
Table 1, the inverse of 11 is 19 [3].

Table 1 - Multiplicative inverse chart

Now  let  us  decipher  the  message  “Ju  mo  xkmc  ua
kbugc” with the inverse key 19. To decrypt the cipher text we
multiply each cipher text by the multiplicative inverse and use
mod (26). 

C1 = 10 * 19mod(26) = 190 mod(26) = 8 = h
C2 = 21 * 19mod(26) = 399 mod(26) = 9 = i

C3 = 13 * 19mod(26) = 247 mod(26) = 13 = m
C4 = 15 * 19mod(26) = 285 mod(26) = 25 = y

Table 2- Multiplicative inverse applied
Ciphertext j u m o

Position 10 21 13 15
Plaintext H i m Y
Position 8 9 13 25

As you go on, you will end up back at  the message “Hi
my name is  Alice”.  Just  like with  the  additive cipher,  the
person  can  brute  force and  find  the  multiplicative inverse.
They  will  eventually  find  the  right  key  and  decipher  the
message. The next cipher will be the Affine cipher which is a
bit more secure.

C.  Affine Cipher

In  order  to  decipher  this  message,  you will  need  the
multiplicative key and  the additive key. The first  step is to
take  multiplicative  inverse  of  the  key and  apply  it  to  the
ciphertext.  Once  that  is  done,  you will  need  to  apply  the
additive inverse to the message to get the plaintext [2]. Let us
take the example, “Hello world”. If you encrypt it using the
additive key of 2 and multiplicative key of 3, we will end up
with the message:

After additive key applied
“jgnnq yqtnf”

After multiplicative key
“duppy wyhpr”

Now  that  we  know  the  ciphertext,  we  can  apply  the
inverse to get back to the original formula. We will do so by

first applying the multiplicative key. Since we are using the
multiplicative key of 3 we know that  the inverse is 9 from
Table 1.

Table 3 - Multiplicative Inverse Key Applied
Cipherttext d u p P

Position 4 21 16 16
Ciphertext

(Multiplicative inverse)
j g n n

Position 10 7 14 14

As observed in Table 3, we are getting back to the additive
ciphertext when its all done. Once finished, you end up with,
“jgnnq yqtnf” as it is expected. Now, if we apply the additive
inverse of 2, which is 24, we get the following:

Table 4 - Additive Inverse Key applied
Ciphertext

(Multiplticative inverse)
J g n n

Position 10 7 14 14
Plaintext h e l l
Position 8 5 12 12

Table 4 is the  result  when finished,  we get  the original
message  “Hello  world”.  We  can  also  use  the  following
formula to decrypt the message where  s is the multiplicative
key and r is the additive key.

     p = r-1 + (s-1 *c) (mod 26)                            (2)
 

If  we  apply  the  key  from  the  example,  we  get  the
following:

C1 = 24+(9* 4)(mod26) = 24+(36)mod(26) = 60mod(26)    =
8 = h

C2 =24+(9*21)(mod26)= 24+(189)mod(26) = 213mod(26) =
5 = e

C3 = 24+(9*16)(mod26) = 24+(144)mod(26) = 168mod(26)
= 12 = k

This cipher is a bit more secure because if someone tries
to  brute  force  this  with  an  additive  decipher/multiplicative
decipher,  they will  get nothing  understandable.  They would
have to do each  possible combination,  which  would take  a
long  time.  This  cipher  is  not  completely safe since  it  is  a
monoalphabetic  cipher,  then,  let  us  take  a  look  at  the
polyalphabetic cipher Vigenere square.

D. Vigenere Square

When you encrypt the message you will use the table seen
in Figure 1. You use the top row for the plaintext and the left
column  for  the  keyword.  Where  the  two intersect  is  your
ciphertext. Deciphering works in a different manner. You will
put your keyword on the top row and scroll down until  you
reach  the  letter  of the  Ciphertext  and  the  letter  on the  left
column  is  your  plaintext.  For  example,  if  we decrypt  the
message, “pqvc vw fcgb rmw” and use the keyword “city”,
we will get the result seen in Figure 1.
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Figure 1: Deciphering Vigenere square

Table 5 - Deciphering of the Vigenere Square
Ciphertext p q V
Keyword c I t
Plaintext n i c

When you continue all the way you will end up with the
message  “Nice  to meet  you”.  This  cipher  is  pretty  secure
because without the key word, you will get  nowhere.  There
are ways to determine the length  of the keyword but it  will
not assist much because of the many different combinations of
letters that you can put together. The next cipher we will look
at is Hill’s System.

E. Hills system

This cipher is typically one of the longer ones to decipher
because you can only do two letters at a time and each time
perform a matrix multiplication. When we encrypted, we use
a 2 x 2 matrix.  We will do the same when we decipher. The
first step is to get the inverse of the 2 x 2 matrix.  Next, you
will  multiply  that  matrix  to  the  inverse  of  ad  –  bc
(determinant).  This  will  give us the inverse matrix  that  we
will use to multiply later on.

  =   

Determinant = ad – (-b * -c)

First find the modular inverse of the determinant.  Similar
to finding the multiplicative inverse.

(( ) * modular inverse of determinant) mod26

= Inverse matrix 

Now that  we  have  the  inverse  matrix,  the  formula  to
compute the plaintext is the following where p is the plaintext
and c is the ciphertext:

 =     * 

mod(26)

(3)

Let’s use an  example  encrypted using  hills  system.  The
encrypted message is “fcuxfwgvuiyvob” and the plaintext is
“Nice to meet you”. When encrypted, we used the key a = 9,
b = 4, c = 5, and d = 7.

The first step is to apply the inverse function to the 
matrix:

  =   

  =   

Now we compute the determinant:

Ad – bc = (9*7) – (-4*-5) = 63 – 20 = 43

To  find  the  modular  inverse  you  can  use  an  online
calculator  to make the process faster.  For this  example,  the
inverse  of  43  is  23.  Now,  we multiply  the  inverse  of  the
determinant with the inverse matrix.

 * 23 mod(26) = 

Now that we have our inverse matrix,  we can apply it to
the ciphertext “fcuxfwgvuiyvob” and get the plaintext. 

 =  *  =  = 

 =  *  =  = 

When we continue all the way, we will get “Nice to meet
you”.  When deciphered,  there will be an  extra  letter  at  the
end because the message was odd numbered. We need an even
number in  order  to do the matrix  multiplication.  The extra
letter  was  taken  out  so the  message  made  sense.   This  is
another  secure  cipher  because of the  key.  It  is  a  bit  more
limited than  the Vigenere cipher  because the key has  to be
prime to the modulus. The last two methods are much safer
than  monoalphabetic  ciphers.  Now that  we  know  how  to
decrypt a messages, let us see the steps to analyze a message
without  any  knowledge  of  the  key  which  is  called
cryptanalysis. 

III. CRYPTANALYSIS
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Cryptanalysis  is  when  we take  an  encrypted  message
and  analyze  it  to see any patterns.  This  is  what  people do
when they intercept a message. This is used not only in a bad
way. It can also help us to find flaws in an encryption method
and obtain new ways to make things more secure. The way to
analyze a message is by using a frequency table. A frequency
table consists of every occurrence of a letter in a message. By
knowing the most frequent used letter in the ciphertext, you
can compare it with the most used letter in English. In Figure
2, we can see the frequency of the most used English letters. 

Figure 2 - Most frequently used English letters

As we can see, the letter “e” is the most used letter in
English.  Knowing the most used letter  in  a Ciphertext,  you
can map that  letter with the letter “e”. This would typically
work  well  with  monoalphabetic  ciphers  because  there  can
only be one letter that corresponds to another letter. There are
also charts for the frequency of digraphs and trigraphs as seen
in Figure 3.

Figure 3 - Frequency table for digraphs and trigraphs

These tables are  mainly used for  higher  level  ciphers
such as Hills system or the Vigenere cipher. The question is
what  do we do with  this  information?.  There  is  a  formula
called  the  Index  of  Coincidence  (IC)  that  can  possibly
determine whether or not the cipher is monoalphabetic or not.
The Index of Coincidence formula is the following:

(4)

In this formula, ni is the corresponding letter in the

In  this  formula,  n i is  the  corresponding  letter  in  the
alphabet. For example, N1 = “A”, N2 = “B” and so on. N is
equal to the length of the message. Then we take the sum and
get  a  result  depending  on the  type of cipher  that  has  been
used. When we get the results there are two options.  If the
result  is close to .065,  then  the message has  probably been
encrypted with a monoalphabetic cipher.  If the result is less
than .065, it has probably been encrypted with a higher level
cipher.  Although  this  result  is  not  all  so  certain,  it  helps
narrow  down  your  search.  For  example,  let  us  take  the
message “Welcome to the poster session”. If we use a basic
additive cipher  and  shift  it  by 6.  We will  get  the following
message,  “ckriuskzuznkvuyzkxykyyout”.  If  we  create  a
frequency table we will get the following:

Table 11: Frequency Table for message
Letter c i k n o r s t u v

Frequency 1 1 5 1 1 1 1 1 4 1

Table 12: Frequency table continued
Letter x y z

Frequency 1 4 3

From this  table we can  see that  k  is  the  most  frequent
letter. When we use the IC formula the result is: 0.0833330.
Since  it  is  higher  than  0.065,  it  would  mean  it  is  a
monoalphabetic cipher which is correct. Since k is the most
frequent letter in the message, we can assume it is the letter e
in the plaintext. We know that the position of e is 5 and k is
11. In order to get from e to k we must shift by 6. Since, we
are  decrypting  the  message  we  would  apply  the  inverse
additive key which  is -6 and  we end up with  the message,
“Welcome  to  the  poster  session”.  If  it  did  not  work,  we
would have to map  k with  the next  most  frequent  English
letter which would be “t” and use the same method or it may
not be an additive cipher. 

Now if we end up getting the result that is less than .065,
we will  need  to  determine  the  length  of  the  keyword/key.
There is a test called the Kasiski Test that can help figure out
the length for the Vigenere Square which states, “if a string of
characters  appears  repeatedly in  a  polyalphabetic ciphertext
message, it is possible (though not certain),  that the distance
between  the  occurrences  is  a  multiple  of the  length  of the
keyword” [2].

For  this  test,  you will  need  to  keep  a  chart  with  the
repeated string, the position of the first letter in the string, the
distance  of  each  of  the  occurring  stings,  and  the  prime
factorization of the distance. With the third column, you can
make an assumption that it is a multiple of the keyword [2].
An example of this is shown in Figure 4.

Figure 4 - Chart for the Kasiski Test
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With this test, it can help us to come to a conclusion on

the length. We can also use the following formula to calculate
the length of the keyword which is:

(5)

In the above formula, n is the variable for the length of
the message. If we apply this formula and say the Kasiski test
led you to the assumption that the multiple of the keyword is
7 and you get 15.7 from the result,  most likely the keyword
length is 14. 

This  same exact  cryptanalysis and  decryption  process is
what we have implemented. The cryptanalysis portion is still
being developed.

IV. IMPLEMENTATION

For the implementation of our cryptographic solution in
MATLAB,  we  started  with  the  monoalphabetic  ciphers.
Before  starting  with  our  MATLAB  implementation,  we
needed to learn about its some important features. When  we
assign to a variable a character,  it will return  you its ASCII
code.

 

As  it  is  seen  above,  the  letter  “e”  corresponds  to  the
decimal number 101 on the ASCII table which can be seen in
the ASCII table in Figure 5.

Figure 5 - Complete ASCII table

 We first  began  with the additive cipher  and  worked our
way up to the Hill’s cipher which was last. We will start off
with the first part of the program which is when we know the
key.

Part 1

Additive Cipher

This cipher is fairly straightforward as you know from the
previous sections. The first step is to get the user message as a
string. The next step is to get the key from the user. Once we
have the  key, we will  need to take its  additive inverse and
apply it to the message which is what we did. 

IM = char(rem(IM-i-96+26,26)+96);

In this line, IM stands for the input message, rem stands
for remainder  which is similar  to mod, and char  converts a
number to a letter  based on their  ACII code. How that  line
works is it  takes the input message where each character  is
converted to decimal, and then subtract the key and subtract
96. We will then add 26 to it  to be able to get the mod 26
afterwards with the rem function. Once we get the remainder,
add 96 back to the remainder so we can return to the original
position on the ASCII table. Once done, we convert  it  back
into characters using char [4]. 

Multiplicative Cipher

We  apply  the  same  basic  idea  with  the  multiplicative
cipher.  We take the user's input and then get its inverse key
which we will then use it to multiply with the input message
and  get  its  corresponding  letter.  To  get  the  multiplicative
inverse or modular inverse, we used the following code:

    [d,a,b] = gcd(k,26);
    in = mod(a,26);

g = gcd(in,26);

With  this  result,  we  can  calculate  the  inverse  of  the
multiplicative key. Once we get that  value, we test it  if it is
prime to the modulus which  in  this  case will  be 26.  If the
value does end up being 1, we will use the same method that
we used for the  additive cipher.  We need to take the  input
message and subtract it by 96 then multiply it by the inverse
key.  Once  we get  that  result,  we use  the  mod  function  to
calculate the modulus of the value and then add 96. Once we
get the ASCII value we use the char command to convert it to
letters.

IM = char(mod((IM – 96)* in, 26) + 96);

Affine Cipher

The  first  step  is  to  get  the  multiplicative  key  and  the
additive key from the user. Using the key, we implement what
we did in the previous two other programs. As we know from
decrypting, you apply the multiplicative key then the additive
key. We apply the following code to find the multiplicative
inverse:

    [d,a,b] = gcd(k,26);
    in = mod(a,26);

Then we check if the gcd of the inverse and the modular is 1
g = gcd(in,26);
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If the gcd is 1, then we will be able to decipher the message.
We put together multiplicative cipher then the additive cipher
code. 

IM = char(mod((IM – 96)* in, 26) + 96);
IM = char(rem(IM-i-96+26,26)+96);

Vigenere Square

The first step is to take in the user’s keyword as a string.
The second step is to convert the strings from its ASCII code
to the position 1 – 26. 

    Key = key – 96;
    IM = IM – 96;

The next  step is  to get  the key index.  This  is done by
creating an array from 0 to the length of the input message
and subtract the length by one. Then you will take the length
of the keyword as the modulus. You will add one to that result
so it is between one and length of the keyword [5]. 

Keyindex = mod(0: (length(IM) – 1) , length(key)) +1;

Once we have the key index, we will use it to identify the
position  of  the  keyword  which  will  repeat  throughout  the
array [5]. 

K = key(keyword);
Disp(k);

If we display the result we will get the following:

Figure 6 - ACII Position for key

As you can see after every four slots it will repeat itself.
This is what we do when we decipher. We repeat the keyword
each  time we reach  the end of the keyword.  Now once we
have this, the next step is to subtract the input message from
the keyword or “k” in this case. We will subtract the keyword
position from the input position.

Plaintext = IM – k;

 Now if the result is less than 0, you will need to add 26
to it. This will let it return to its position. From time to time,
the result will be less than 0. To correct the positions we do
the following:

index = plaintext < 0;
    plaintext(index) = plaintext(index) + 26;

The  index  line  lets  the  program  find  the  position  of
where the plaintext is less than 0. The following line adds 26

to the corresponding position. This corrects the position. The
last step in this program is to convert  it  from Ciphertext  to
plaintext  by using the char  command after adding 96 to the
Ciphertext. 

Plaintext = char(plaintext + 96);

Hills System

The first step is to analyze the input to see if the length of
the message is even. If it is not just add an extra letter in the
end.  Now once we have an  even input,  the  next  step is  to
change the array into a 2 x (length of message divided by 2)
matrix. This is done by the reshape command in MATLAB.

IM = reshape(IM,2,Size/2);

 This  is  needed  so  you  can  perform  the  matrix
multiplication. You cannot multiple a 2 x 2 with a  1 x (length
of message).  As usual,  you will  need to convert  it  from its
ASCII code to 1 – 26. We need to get the key and put it in a 2
x  2  array.  Once  we have  the  matrix,  we need  to  take  the
inverse. 

Inm = [d –b;-c a];

Once done, the next step is to get the determinant  of the
matrix.

X = (a*d)-(b*c);

Next,  we  need  to  find  the  modular  inverse  of  the
determinant. Now if the inverse is prime to 26, then you will
multiply the  modular  inverse  with  the  inverse  matrix.  The
second to final step is to multiply the inverse matrix with the
input message array. This will give you the result but first you
will need to reshape it again so when you display it, it will be
correct and in order. We turn it back into a single row and to
its original length with the following: 

IM = reshape(y,1,Size);

Once that is done the final step is to convert it back with
char. Now we will see how to implement the cryptanalysis. 

Part 2

In  this  part  of the  program  we will  implement  the  IC
formula and the frequency table to examine an input message.
First you will get the users input. The next step is to create a
table which holds all the occurrences of each letter. This can
be done in different ways but we did the following:

A = zeros(1, 26);
for i = 1:Size
    for j = 1:26

        A(j);
    end

    if(IM(i) == 'a')
        A(1) = A(1)+1;   
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             End
(b – z)

end

For each iteration,  the corresponding  letter  will increase
by 1.  Once we have this,  we implement  the  IC formula  to
determine the whether it is monoalphabetic or another higher
level cipher. This can be done by using the sum() function in
MATLAB.

sum((A(k).*(A(k)-1))/(Size*(Size - 1)));

 If the result states it’s a monoalphabetic cipher,  we will
test each cipher. The same will happen with the higher level
ciphers.  For  now we will  only  work  with  monoalphabetic
ciphers. Now if the value is close to 0.065, we will run tests
from the  first  monoalphabetic  cipher  which  is  the  additive
and then to the multiplicative. Now we will pass the values of
the  matrix  A,  the  input  message  (IM)  and  the  Size  of the
message. Now we will take the array A and determine which
value is the most frequent. Once we have the index value, we
will subtract e (5) – I (index of most frequent letter value (1-
26)). This will give us the key if it was an additive cipher. We
would apply mod(26) just in case it wasn’t from 1 – 26. Now
we will apply this key, r:

IM = char(mod(IM + r - 96,26)+96);

To check the output, we use a function called spellcheck
which  will  check  the  spelling.  This  is  as  far  as  we  got
implementing  the  cryptanalysis.  The  following  will  be  the
results of the program. 

V. RESULTS

As mentioned  before,  this  program  has  two parts.  The
first  part  is  where  the  user  enters  the  key and  the  other  is
where the user just inputs a message

Part 1

Figure 7 - Main menu decryption with key

Once here, you can choose which type of cipher you would
like to decipher.  We will go through each one and see if the
result  is  correct.  We  will  start  with  the  monoalphabetic
ciphers first.

Figure 8 - Monoalphabetic Menu

If  the  user  inputs  1,  it  will  take  them  to  the
Monoalphabetic menu.  It will prompt them for the message
and then the key. Let’s begin with the additive cipher.

Additive/ Caeser Cipher

We will  use  the  Ciphertext  from  the  example  we  used
before “Ab fr gtfx bl Tebvx” with the key of 19.

Figure 9 - Output from Additive Program

Although the letters aren’t  separated, you can still see the
original message. 

Multiplicative Cipher

Let’s take the example, “Ju mo xkmc ua kbugc”, with the
multiplicative key of 11:

Figure 10 - Multiplicative Ciphertext Deciphered

Affine Cipher

This part takes in the inputs for the multiplicative key and
additive key. We will use the example “gqkthmr yc dmffmz”
with the multiplicative key of 3 and additive key of 8.

Figure 11 - Affine Deciphered

For  this  cipher  we used a  different  message which  was
“Complex is better”. For the next section, the user would need
to input 2 in the main menu to get to the Vigenere Square.

Vigenere Square

We will use the Ciphertext message, “pqvc vwfc gbrm w”
and the keyword “city” to decipher the message. 
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Figure 12 - Vigenere Square Program

The  outputs  you  see  displayed  on  the  screen  are  the
position  of the keyword letters.  This  time our message was
“Nice to meet you”.

Hills System

Once the user inputs the message, it will determine if it is
even or odd. If it is even it will decipher, else you will need to
add an extra letter. Let’s take the message “fcuxfwgvuiyvob”
with the key a = 9, b = 4, c = 5, d = 7. For this situation, we
removed letter at the end to see what happened if it was odd. 

Figure 13 - Situation where message is odd

Now when I put back the last letter and the same key this
is the result I get.

Figure 14 - Even input and output

As you can  see the program gave me the correct  output
“Nice to meet you” even though it has the extra letter at the
end.  When situations like these happen,  you can ignore the
last letter. 

Part 2

In the main menu, if you entered “N” it will perform the
cryptanalysis. The example we will use is a monoalphabetic
cipher. We took the message, “Welcome to the poster session”
and used the additive key of 6 to encrypt it.  Our output is,
“ckriuskzuznkvuyzkxykyyout”. We will use this example for
our input message in our program. 

The first  cipher  it  will  test  is  the additive cipher.  If we
input the cipher from above, our output will be the following: 

Figure 15 - Frequency Table/ IC formula result

For  the  spellcheck  function,  1  means  it  was  spelled
correctly  and  0  means  it’s  not.  Now if  it  was  a  messaged
encrypted  with  a  multiplicative,  the  first  result  would  be
wrong and move on to the next cipher. To show this, let’s take
the example,  “Welcome to the poster session”,  and apply a
multiplicative  key  of  3  to  the  message,
“qojismohshxovsehobeoeeasp”.  If  we  input  this  to  the
program, we won’t get an output, but we can see it move on
to the next cipher. This is because we haven’t fully completed
this part of the program. 

Figure 16 - Output from multiplicative program

Since  it  hasn’t  been  completed  it  can’t  determine  if  a
multiplicative  cipher  was  used.  This  is  what  we  plan  to
accomplish in the future.

VI. FUTURE RESEARCH

We  were  able  to  implement  deciphering  messages  in
MATLAB.  As  of  right  now  we  have  the  additive  cipher
implemented  but  we would  like  to  continue  implementing
cryptanalysis to determine the rest of the ciphers.  A conflict
with this is when you get to the higher level ciphers where the
key could  be anything  like  the  Vigenere  Square  and  Hills
Cipher. 

VII. CONCLUSION

We successfully  implemented  the  decrypting  methods:
Additive,  Multiplicative,  Affine,  Vigenere Square,  and  Hills
system using MATLAB. If you input the correct key, it  will
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display  the  correct  output.  With  our  knowledge,  we  can
continue going further then just decrypting with a key.  
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