
15
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, USA.

Big Data Analytics Overview with Hadoop and Spark

Harrison Carranza, MSIS
Marist College, USA, Harrison.Carranza2@marist.edu

Mentor: Aparicio Carranza, PhD

New York City College of Technology - CUNY, USA, acarranza@citytech.cuny.edu

Abstract– In this modern era of technology the amount of

data and information has increased vastly. It is essential that

we acquire and utilize the appropriate software to manage

our ever-growing stored data. With the use of Apache

software, we can observe the distribution processing of large

datasets across clusters of computers. The Hadoop software

library is a framework that enables applications to work with

hundreds of nodes and petabytes of data. Spark permits data

analysis to be done among interactive queries and data

stream processing at a very fast rate. Instead of relying

solely on hardware to deliver High-Availability, these

software applications are designed to detect and handle

failures at the application layer. With the rapid advancement

in technology, it is increasingly important to scale up

applications to provide modern solutions for processing

large data sets. In order to demonstrate the use of this

framework, we shall describe how Apache Hadoop and

Spark functions across various Operating Systems as well as

how it is used for the analyses of large and diverse datasets.

Keywords — Big Data, Data Processing, Distributed

Programming, HDFS, Hadoop, Parallel Computing, Spark.

I. INTRODUCTION

As the amount of data we use increases, so does the need

of the analysis. In a few decades we have vastly expanded the

use of technology. Personal computers originally came with a

16KB of RAM and required cassettes to load and store

programs. Today, personal computers boast 8GB or more

RAM with internal storage of more than 1TB.

As of 2014 Facebook has stored 300 Petabytes of data at a

rate of 600 terabytes a day in order to handle its users’ billions

of photos [5]. These amounts of data pose problems of

computing power and storage capabilities. Just 10 TB of data

would take 5 nodes of parallel computing power 6 hours to

process/read it. If the same data were spread across 500 nodes

it would then take around 6 minutes to read. However, if we

transfer this data over a network to other nodes the time would

increase by some orders of magnitude.

Apache Hadoop addresses these concerns by distributing

the work and data over thousands of machines in clusters. In

this manner the workload is spread evenly across the cluster,

which allows for effective parallel computing of data. It also

ensures that only a small amount of data is transferred over the

network on processing time so it suits best scenarios where

data is written once and is read many times – this is known as

WORM [1].

The two major pieces of Hadoop are Hadoop Distributed

File System (HDFS) and MapReduce. The former is designed

to scale Petabytes of storage and runs on top of the file

systems of the underlying OS. It provides high-throughput

access to application data. The MapReduce programming

model allows the programmer to work on an abstract level

without having to fiddle with any cluster specific details or

communication and data flow. With the use of two functions,

map and reduce, we are able to receive incoming data, modify

it and send it to an output channel.

Apache Spark is another form of software for performing

big data analysis. It is known as a cluster computing platform

designed to be fast; and used for quick processing. Spark

extends beyond the MapReduce model in order to efficiently

support many types of computations that are being done.

Among these computations are interactive queries and data

stream processing. Speed is very important when it comes to

the processing of large datasets. If dataset processing is not

quick enough, exploring data interactively could not take

place because of the lengthy wait due to slow speed [1].

Spark was designed to facilitate the workloads that were

used before as individual distributed systems. Included among

these systems were batch applications, iterative algorithms,

interactive queries, and streaming. Since all workloads are

now performed and processed in one engine, Spark comes

into play to cover the wide range of tasks as an easy and

inexpensive method of combination of processes. It is also

beneficial to Administrators as they are not required to

manage various tools located all over a complex system [2].

II. GRID COMPUTING

Grid computing is the collection of computer resources

from multiple locations to reach a common goal. It is

distinguished from conventional high performance computing

systems such as cluster computing in that grid computers have

each node set to perform a different task/application. The

general approach is to distribute the work over the nodes but

leave the data on a central storage; this works well for

compute-intensive tasks but eventually becomes a bottleneck

for tasks, which require access to the whole dataset.

Hadoop follows a different approach by attempting to

locate the work units on the same nodes as the data for this

unit is hosted. This is important because in a data center the

mailto:Harrison.Carranza2@marist.edu
mailto:acarranza@citytech.cuny.edu

15
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, USA.

network bandwidth becomes the most precious asset if the

amount of data is large. After all, Hadoop consists of the three

primary resources: HDFS, MapReduce programming

platform, and the Hadoop ecosystem, which is a collection of

tools that organize and store data as well as manage the

machines on Hadoop.

III. HADOOP FRAMEWORK

The Hadoop Framework consists of several modules,

which provide different parts of the necessary function to

distribute both tasks and data across a cluster. This is

explained in further detail in later sections. A cluster consists

of several nodes organized into racks, each node running a

task tracker for the map reduce tasks and a data node for the

distributed storage system. A special node named the Master-

Node runs a job tracker and a name node, which organizes the

distribution of data [6]. This is shown in Figure 1.

Figure 1 - Abstract view of a Cluster

Hadoop is written in Java but can run the MapReduce

programs expressed in other languages such as Python, Ruby,

and C++. No matter which language is implemented in; the

map function will still work as long as it can read and write

from standard input to standard output. In every cluster

running Hadoop there is one node known as the master node.

Communication from outside of the cluster is completely

handled by each cluster’s respective master node. It keeps all

the necessary information about the cluster, usage of the

nodes, disk-space and distribution of files. Each map reduce

task is sent to the master node where the job tracker manages

its jobs and to the name node, which is responsible for

everything concerning the file system. A Hadoop cluster

typically consists of thousands of nodes and is further

subdivided into racks by a two-level network topology [6].

The framework’s configuration should include

information regarding the topology in order to allow the

underlying file system the use of the location for its

replication strategy. Additionally, it allows the framework to

place MapReduce tasks near the data they operate on. In a

distributed system with a large number of nodes of commodity

hardware, failure is the biggest problem to cope with. HDFS

approaches this by replicating the data to three nodes by

default, one of which is to be in another rack to make sure the

data is available when a network link fails and a complete rack

goes offline. The file system allows for files with a size of tens

of Petabytes but restricts the usage of the files to streaming-

access because the “time to read the full dataset (or large

portions of it) is more important than latency in reading the

first record [7]." Other file systems such as the CloudStore or

the Amazon Simple Storage Service can be used instead of

HDFS too; the framework provides an abstract class and

several implementations for different storage systems.

IV. HDFS STRUCTURE

A Hadoop cluster running HDFS as a file system always

has a central Name Node (as shown in figure 1) that handles

the data distribution and any operations on the data. It

communicates with the Data Node, which is running on every

single connected node and performing the disk access. Every

Data Node periodically reports a list of its blocks to the Name

Node so the Name Node does not need to write this

information to disk all the time. The Name Node just

persistently stores information about the file system-tree and

the metadata of the files.

The Data Nodes are responsible for serving Read and

Write requests from the file system's clients. The Data Nodes

also perform block creation, deletion, and replication upon

instruction from the Name Node. The read- and write-requests

from clients are managed by the Name Node but executed by

the Data Nodes because the Name Node has the file systems'

metadata and knows which nodes store the requested blocks.

The user data is never going through the Name Node because

this would quickly saturate its' network connection [9].

Hadoop's Distributed File System was designed with the

purpose to reliably store very large files across machines in a

large cluster. It was inspired by the Google File System.

HDFS stores each file as a sequence of blocks, in which all

blocks in a file except the last block are the same size. Blocks

belonging to a file are then replicated for fault tolerance. The

block size and replication factor are configurable per file.

Files in HDFS are "write once" and have strictly one writer at

any time. The goal of the HDFS is to store large data sets,

cope with the hardware failure, and emphasize streaming data

access.

15
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, USA.

Figure 2 - Typical Hadoop Structure.

As shown in Figure 2, the commodity hardware consists

of Linux PCs with 4 local disks. This is a typical level 2

architecture with 40 nodes per rack. The uplink from the rack

is approximately 8 Gbps and the rack internal is 1 Gbps all-to-

all. This allows for a single namespace for the whole cluster,

which is optimized for streaming reads of large files. The files

are broken into large blocks of about 128 MB and replicated

to several data-nodes for reliability. The client then

communicates with the name-node and the data-nodes. The

throughput of the file system scales parallel to the number of

nodes. In large clusters, some nodes might delay performance.

If this occurs, then the framework re-executes failed and

malfunctioning tasks. MapReduce queries HDFS for locations

of input data and tasks are scheduled close to the inputs when

and if possible [3].

Figure 3 - Overview of the Hadoop Ecosystem

The Hadoop Ecosystem consists of many projects such as

Sqoop, Flume, Oozie, Whirr, and ZooKeeper, which are all

linked and work with the Hadoop Distributed File System, as

show in Figure 3 [3].

Figure 4 - Data flow in a Hadoop Cluster.

Figure 4 depicts the flow in a Hadoop Cluster – here, the

input data is passed to the Map jobs, which apply their

function and output key-value pairs grouped by the key and

sorted. Every Reducer gets the pairs for one key and outputs

the processed data into the distributed storage. They are then

sorted out, reduced, and the output is obtained.

V. MAP REDUCE AND WORD COUNT

MapReduce was the first and is still the primary

programming framework for developing applications in

Hadoop. MapReduce functions with the use of Java. This

application has jobs that consist of Java programs called

mappers and reducers. The way that it works is that each

mapper is provided data that is to be analyzed. Using a

sentence for an example, we could analyze the data [4], [8].

To illustrate how MapReduce functions, we can use an

example called “Word Count”. If we create a sentence, we

could analyze it from top to bottom and create name-value

pairs or maps. For experimentation purposes, “The dog at the

food” is going to be our sentence. Let’s assume it gets a

sentence: “My cat went to my bed.” The maps are: “my”:1,

“cat”:1, “went”:1, “to”:1, “my”:1, and “bed”:1. The name is

the word, and the value is a count of how many times it

appears on record. In this example, all the words would show

up with a 1 next to it but “my” would be displayed as “my”:2

once the processing is done [4].

The job of Hadoop is to process all the data, in this case,

the sentence, and arranges it as needed. Then they are

assigned to reducers in shuffles, sums up all the maps for each

word, and produce the words listed in a document. Essentially,

15
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, USA.

mappers are programs that extract data from HDFS files into

maps, and reducers as programs that take the output from the

mappers and overall aggregate data [4].

Here is a thorough example involving Word Count. It is

the most commonly used example to explain the usage of the

map and reduce functions. It takes the input text and sums up

counts for every appearing word. It can also optionally be

installed as a combiner class to save on bandwidth. It sums up

all counts of one map task prior to sending the result.

Here is an example source code:

virtual void Map(const MapInput& input)

{

 const string& text = input . value () ;

const int n = text.size();

for (int i = 0; i < n;)

{

// Skip past leading whitespace

while ((i < n) && isspace(text[i]))

 i++;

// Find word end

int start = i;

while ((i < n) && !isspace(text[i]))

i++;

if (start < i)

Emit(text . substr (start , i−start) ,”1”) ;

}

 }

virtual void Reduce(ReduceInput∗ input)

{

// Iterate over all entries with the

// same key and add the values

int64 value = 0;

while (!input−>done())

{

value += StringToInt(input−>value()); input−>NextValue

();

 }

// Emit sum for input−>key()

Emit(IntToString (value)) ;

}

Sorting in Hadoop normally is an implicit merge-sort,

which is done by the framework and does not need to be

implemented. In the examples supplied with the Hadoop

source code the Map and Reduce functions are left empty,

there is only a special partitioning function that tries to find

evenly distributed partitions based on a sample of a small

subset of the keys. The sorting takes place on the nodes that

perform the (empty) mapping function and the result of this

process is merged together by the reducers.

VI. HADOOP EXPERIMENTATION

This experiment explores the functionality of Hadoop

across various operating systems. We have tested it with the

following OS versions:

 Windows 7

 Ubuntu Linux 14.04

 Mac OS X Yosemite

The main goal of this initial part of the experiment was to

perform simple Hadoop installation in order to play around

with the software and to learn more about how it works. In

order to accomplish this, I installed a single node cluster on

each of the three different environments (see [10] for a

complete tutorial).

After enough basic knowledge was gained in Hadoop, I

decided to implement a multimode cluster in each of the

operating systems in order to discover any differences that

may surface amongst them.

Oracle VM Virtual Box Manager in order to create the

cluster of virtual operating systems. Figure 5 demonstrates the

three operating systems inside the hypervisor.

Figure 5 - Ubuntu Linux Hadoop multimode cluster.

In Figure 5, we can observe the startup menu of the

Hadoop Application, ready to be used with Ubuntu Linux.

From here, we can perform the experiment of processing the

necessary data.

15
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, USA.

Figure 6 - Hadoop cluster running on Ubuntu

The processing of the data is carried out from Wikipedia’s

data dump [11] with the word count example program, as

shown in Figure 7. There was a limitation to a few TB of data

due to storage limitations, but this had no effect on the core

principals of the experiment. In order to ensure consistency,

the same exact data and amount of memory with each of the

different operating systems was used.

Figure 7 - Sample Index of Wikipedia entries.

We have discovered a few interesting things while

conducting this research with regards to the efficiency of

Hadoop across different OS platforms. When name node

memory usage is higher than a certain percentage (say 75%),

reading and writing HDFS files through Hadoop API will fail.

This is caused by Java Hashmap as well as its collision

resolution because it stores the collided elements in a linked

list. Name node’s QPS (query per second) can be optimized

by fine-tuning the handler counts higher than the number of

tasks that can be run in parallel.

Figure 8 - Test File Processing with Hadoop

We create a test file in order to observe the processing

performance of Hadoop. Keep in mind that the memory

available affects the namenode’s performance in each OS

platform. As such you should allocate sufficient memory in

order to ensure it has headroom to not fall into full garbage

cycles. The results are displayed in Figure 8. Since memory

has such an effect performance, it makes sense that an

Operating system that utilizes less RAM for background and

utility features also yields better results. In the case of this

experiment Ubuntu Linux would be the ideal environment

seeing as it uses the least amount of memory, followed by

Mac OSX and then finally Windows.

VII. OVERVIEW OF APACHE SPARK

Spark is Apache software that is distribute and is highly

scalable in the memory data analytics system. It is designed to

be accessible and provides the ability to develop simple and

complex application programming interfaces for many

languages such as Python, Java, Scala, and SQL [1], [2]. They

contain libraries within the system that have many options to

perform Big Data Analysis. Spark can run in Hadoop clusters

and access any Hadoop data source.

The Spark project consists of components integrated at

the core. It is considered to be a computational machine that is

responsible for scheduling, distributing, and monitoring

applications that involve computational tasks across computer

clusters. This allows machine learning to be done at a fast

pace. The components are interconnected and operate together

in a network, allowing all types of users to put libraries

together as one framework of the project [3].

Spark is one of the leading software applications in the

market when it comes to Big Data. It has one of the highest

contribution and involvement rates among the current Apache

top level projects. Many Apache systems use a processing

engine instead of MapReduce, which is used heavily by

Hadoop. Figure 9, demonstrates Spark and the variety of

modules that lie within the system.

15
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, USA.

Figure 9 - Modules of the Apache Spark

Apache Spark provides four main submodules, which are

SQL, MLlib, GraphX, and Streaming. The modules are

interoperable, so data can be passed between them. For

instance, streamed data can be passed to SQL, and create a

temporary table. Above, the top two rows show Apache Spark

and four submodules [1].

VIII. BENEFITS OF APACHE SPARK

Spark has several benefits that need to be taken into

consideration. When Spark’s core engine is optimized, the rest

of the system speeds up, creating a better environment for

SQL and machine learning. In addition, the cost is lower when

the stacks are minimized. This demonstrates that instead of

running a group or network of independent software systems,

an enterprise would only use one [2]. This is considered to be

a type of virtualization because the amount of physical space

is reduced, benefiting enterprises.

The application would help to reduce costs in several

aspects such as deployment, maintenance, testing, support,

and other financial factors. When a new component is added

to the software, all organizations that are running their

systems on Spark are going to be required to upgrade their

systems using the new components. This changes the cost of

trying out a new type of data analysis from downloading,

deploying, and learning a new software project to upgrading

Apache Spark [2].

If core engine optimization and software component

addition are considered to be beneficial to the organizations

using Spark, then tight integration would be considered to be

the largest advantage of the Spark application. With the use of

integration, we gain the ability to construct applications that

can combine different types of processing models. Just to help

visualize this advantage, suppose that in Spark you can write

one application that uses machine learning to classify data in

real time as it gets acquired from streaming sources.

Simultaneously, the resulting data can be queried by means of

SQL in real time. The purpose of this process is to join the

data that contains unstructured log files in the system. Here is

where the Python shell would be used for further analysis on

the data.

Figure 10 - Components of the Spark Stack

IX. CONCLUSION

Overall, it is evident that the growing technology that

surrounds is just going to expand into new horizons. As this

occurs, it is very important that we keep our storages of data

secure and accessible. Hadoop and Spark do just that.

Throughout this investigation, experiments have been

performed with Hadoop to demonstrate that it can be used to

manage large quantities of data by useful means of HDFS and

MapReduce. Even though experimentation was done mostly

in Hadoop and many results were obtained, Spark could be a

better choice for enterprises since it was designed to facilitate

the workloads used before as individual distributed systems.

Now that everything is done in one engine, Spark can cover a

wider range of tasks and there won’t be the need of managing

many tools in the system. For further research, I plan to

explore Spark as well as MapReduce and HDFS in order to

uncover what makes it the top option to perform Big Data

processes and analyses.

 REFERENCES

[1] Frampton, M.: Mastering Apache Spark. Packt Publishing, Birmingham,

UK (2015)

[2] Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark.

O’Reilly, Sebastopol, CA (2015)

[3] Barot, G., Mehta, C., Patel, A.: Hadoop Backup and Recovery Solutions.

Packt Publishing, Birmingham, UK (2015)

[4] Sitto, K., Presser, M.: Field Guide to Hadoop. O’Reilly, Sebastopol, CA

(2015)

[5] Cohen, D: http://www.adweek.com/socialtimes/orcfile/434041, 04/11/14

[6] https://cloud.google.com/resources/articles/managing-hadoop-clusters-

on-google-compute-engine2 (2014) Google Cloud Platform.

[7] White, T.: Hadoop: The Definitive Guide. Second Edition, Yahoo Press,

(2009)

[8] Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce

(Synthesis Lectures on Human Language Technologies). Morgan and

Claypool Publishers (2010)

[9] Apache Hadoop http://hadoop.apache.org/ (Retrieved: 2016-12-12)

[10] Noll, M. G.: http://www.michael-noll.com/tutorials/running-hadoop-on-

ubuntu-linux-single-node-cluster/

[11] Wikipedia: http://dumps.wikimedia.org/enwiki/

http://www.adweek.com/socialtimes/orcfile/434041
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://dumps.wikimedia.org/enwiki/

