
15
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for 

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, USA. 

Big Data Analytics Overview with Hadoop and Spark 
 

Harrison Carranza, MSIS 
Marist College, USA, Harrison.Carranza2@marist.edu 

 

Mentor: Aparicio Carranza, PhD 

New York City College of Technology - CUNY, USA, acarranza@citytech.cuny.edu  
 

 

Abstract– In this modern era of technology the amount of 

data and information has increased vastly. It is essential that 

we acquire and utilize the appropriate software to manage 

our ever-growing stored data. With the use of Apache 

software, we can observe the distribution processing of large 

datasets across clusters of computers. The Hadoop software 

library is a framework that enables applications to work with 

hundreds of nodes and petabytes of data. Spark permits data 

analysis to be done among interactive queries and data 

stream processing at a very fast rate. Instead of relying 

solely on hardware to deliver High-Availability, these 

software applications are designed to detect and handle 

failures at the application layer. With the rapid advancement 

in technology, it is increasingly important to scale up 

applications to provide modern solutions for processing 

large data sets. In order to demonstrate the use of this 

framework, we shall describe how Apache Hadoop and 

Spark functions across various Operating Systems as well as 

how it is used for the analyses of large and diverse datasets. 
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I.  INTRODUCTION 

As the amount of data we use increases, so does the need 

of the analysis. In a few decades we have vastly expanded the 

use of technology. Personal computers originally came with a 

16KB of RAM and required cassettes to load and store 

programs. Today, personal computers boast 8GB or more 

RAM with internal storage of more than 1TB. 

As of 2014 Facebook has stored 300 Petabytes of data at a 

rate of 600 terabytes a day in order to handle its users’ billions 

of photos [5]. These amounts of data pose problems of 

computing power and storage capabilities.  Just 10 TB of data 

would take 5 nodes of parallel computing power 6 hours to 

process/read it. If the same data were spread across 500 nodes 

it would then take around 6 minutes to read. However, if we 

transfer this data over a network to other nodes the time would 

increase by some orders of magnitude.  

Apache Hadoop addresses these concerns by distributing 

the work and data over thousands of machines in clusters. In 

this manner the workload is spread evenly across the cluster, 

which allows for effective parallel computing of data. It also 

ensures that only a small amount of data is transferred over the 

network on processing time so it suits best scenarios where 

data is written once and is read many times – this is known as 

WORM [1]. 

The two major pieces of Hadoop are Hadoop Distributed 

File System (HDFS) and MapReduce. The former is designed 

to scale Petabytes of storage and runs on top of the file 

systems of the underlying OS. It provides high-throughput 

access to application data. The MapReduce programming 

model allows the programmer to work on an abstract level 

without having to fiddle with any cluster specific details or 

communication and data flow. With the use of two functions, 

map and reduce, we are able to receive incoming data, modify 

it and send it to an output channel. 

Apache Spark is another form of software for performing 

big data analysis. It is known as a cluster computing platform 

designed to be fast; and used for quick processing. Spark 

extends beyond the MapReduce model in order to efficiently 

support many types of computations that are being done. 

Among these computations are interactive queries and data 

stream processing. Speed is very important when it comes to 

the processing of large datasets. If dataset processing is not 

quick enough, exploring data interactively could not take 

place because of the lengthy wait due to slow speed [1]. 

Spark was designed to facilitate the workloads that were 

used before as individual distributed systems. Included among 

these systems were batch applications, iterative algorithms, 

interactive queries, and streaming. Since all workloads are 

now performed and processed in one engine, Spark comes 

into play to cover the wide range of tasks as an easy and 

inexpensive method of combination of processes. It is also 

beneficial to Administrators as they are not required to 

manage various tools located all over a complex system [2]. 

 

II. GRID COMPUTING 

Grid computing is the collection of computer resources 

from multiple locations to reach a common goal. It is 

distinguished from conventional high performance computing 

systems such as cluster computing in that grid computers have 

each node set to perform a different task/application. The 

general approach is to distribute the work over the nodes but 

leave the data on a central storage; this works well for 

compute-intensive tasks but eventually becomes a bottleneck 

for tasks, which require access to the whole dataset. 

Hadoop follows a different approach by attempting to 

locate the work units on the same nodes as the data for this 

unit is hosted. This is important because in a data center the 
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network bandwidth becomes the most precious asset if the 

amount of data is large. After all, Hadoop consists of the three 

primary resources: HDFS, MapReduce programming 

platform, and the Hadoop ecosystem, which is a collection of 

tools that organize and store data as well as manage the 

machines on Hadoop. 

 

III. HADOOP FRAMEWORK 

The Hadoop Framework consists of several modules, 

which provide different parts of the necessary function to 

distribute both tasks and data across a cluster. This is 

explained in further detail in later sections. A cluster consists 

of several nodes organized into racks, each node running a 

task tracker for the map reduce tasks and a data node for the 

distributed storage system. A special node named the Master-

Node runs a job tracker and a name node, which organizes the 

distribution of data [6]. This is shown in Figure 1. 

 

 
 

Figure 1 - Abstract view of a Cluster 

 

Hadoop is written in Java but can run the MapReduce 

programs expressed in other languages such as Python, Ruby, 

and C++. No matter which language is implemented in; the 

map function will still work as long as it can read and write 

from standard input to standard output. In every cluster 

running Hadoop there is one node known as the master node. 

Communication from outside of the cluster is completely 

handled by each cluster’s respective master node. It keeps all 

the necessary information about the cluster, usage of the 

nodes, disk-space and distribution of files. Each map reduce 

task is sent to the master node where the job tracker manages 

its jobs and to the name node, which is responsible for 

everything concerning the file system. A Hadoop cluster 

typically consists of thousands of nodes and is further 

subdivided into racks by a two-level network topology [6].   

The framework’s configuration should include 

information regarding the topology in order to allow the 

underlying file system the use of the location for its 

replication strategy. Additionally, it allows the framework to 

place MapReduce tasks near the data they operate on. In a 

distributed system with a large number of nodes of commodity 

hardware, failure is the biggest problem to cope with. HDFS 

approaches this by replicating the data to three nodes by 

default, one of which is to be in another rack to make sure the 

data is available when a network link fails and a complete rack 

goes offline. The file system allows for files with a size of tens 

of Petabytes but restricts the usage of the files to streaming-

access because the “time to read the full dataset (or large 

portions of it) is more important than latency in reading the 

first record [7]." Other file systems such as the CloudStore or 

the Amazon Simple Storage Service can be used instead of 

HDFS too; the framework provides an abstract class and 

several implementations for different storage systems. 

 

IV. HDFS STRUCTURE 

A Hadoop cluster running HDFS as a file system always 

has a central Name Node (as shown in figure 1) that handles 

the data distribution and any operations on the data. It 

communicates with the Data Node, which is running on every 

single connected node and performing the disk access. Every 

Data Node periodically reports a list of its blocks to the Name 

Node so the Name Node does not need to write this 

information to disk all the time. The Name Node just 

persistently stores information about the file system-tree and 

the metadata of the files. 

The Data Nodes are responsible for serving Read and 

Write requests from the file system's clients. The Data Nodes 

also perform block creation, deletion, and replication upon 

instruction from the Name Node. The read- and write-requests 

from clients are managed by the Name Node but executed by 

the Data Nodes because the Name Node has the file systems' 

metadata and knows which nodes store the requested blocks. 

The user data is never going through the Name Node because 

this would quickly saturate its' network connection [9].  

Hadoop's Distributed File System was designed with the 

purpose to reliably store very large files across machines in a 

large cluster. It was inspired by the Google File System. 

HDFS stores each file as a sequence of blocks, in which all 

blocks in a file except the last block are the same size. Blocks 

belonging to a file are then replicated for fault tolerance. The 

block size and replication factor are configurable per file. 

Files in HDFS are "write once" and have strictly one writer at 

any time. The goal of the HDFS is to store large data sets, 

cope with the hardware failure, and emphasize streaming data 

access. 
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Figure 2 - Typical Hadoop Structure. 

 

As shown in Figure 2, the commodity hardware consists 

of Linux PCs with 4 local disks. This is a typical level 2 

architecture with 40 nodes per rack. The uplink from the rack 

is approximately 8 Gbps and the rack internal is 1 Gbps all-to-

all. This allows for a single namespace for the whole cluster, 

which is optimized for streaming reads of large files. The files 

are broken into large blocks of about 128 MB and replicated 

to several data-nodes for reliability. The client then 

communicates with the name-node and the data-nodes. The 

throughput of the file system scales parallel to the number of 

nodes. In large clusters, some nodes might delay performance. 

If this occurs, then the framework re-executes failed and 

malfunctioning tasks. MapReduce queries HDFS for locations 

of input data and tasks are scheduled close to the inputs when 

and if possible [3]. 

 

 
 

Figure 3 - Overview of the Hadoop Ecosystem 

 

The Hadoop Ecosystem consists of many projects such as 

Sqoop, Flume, Oozie, Whirr, and ZooKeeper, which are all 

linked and work with the Hadoop Distributed File System, as 

show in Figure 3 [3]. 

 
 

Figure 4 - Data flow in a Hadoop Cluster. 

 

Figure 4 depicts the flow in a Hadoop Cluster – here, the 

input data is passed to the Map jobs, which apply their 

function and output key-value pairs grouped by the key and 

sorted. Every Reducer gets the pairs for one key and outputs 

the processed data into the distributed storage. They are then 

sorted out, reduced, and the output is obtained. 

 

V. MAP REDUCE AND WORD COUNT 

MapReduce was the first and is still the primary 

programming framework for developing applications in 

Hadoop. MapReduce functions with the use of Java. This 

application has jobs that consist of Java programs called 

mappers and reducers. The way that it works is that each 

mapper is provided data that is to be analyzed. Using a 

sentence for an example, we could analyze the data [4], [8]. 

To illustrate how MapReduce functions, we can use an 

example called “Word Count”. If we create a sentence, we 

could analyze it from top to bottom and create name-value 

pairs or maps. For experimentation purposes, “The dog at the 

food” is going to be our sentence.  Let’s assume it gets a 

sentence: “My cat went to my bed.” The maps are: “my”:1, 

“cat”:1, “went”:1, “to”:1, “my”:1, and “bed”:1. The name is 

the word, and the value is a count of how many times it 

appears on record. In this example, all the words would show 

up with a 1 next to it but “my” would be displayed as “my”:2 

once the processing is done [4]. 

The job of Hadoop is to process all the data, in this case, 

the sentence, and arranges it as needed. Then they are 

assigned to reducers in shuffles, sums up all the maps for each 

word, and produce the words listed in a document. Essentially, 
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mappers are programs that extract data from HDFS files into 

maps, and reducers as programs that take the output from the 

mappers and overall aggregate data [4]. 

Here is a thorough example involving Word Count. It is 

the most commonly used example to explain the usage of the 

map and reduce functions. It takes the input text and sums up 

counts for every appearing word. It can also optionally be 

installed as a combiner class to save on bandwidth. It sums up 

all counts of one map task prior to sending the result. 

Here is an example source code: 

 

virtual void Map(const MapInput& input) 

{ 

 const string& text = input . value () ;  

const int n = text.size(); 

 

for (int i = 0; i < n; ) 

{  

// Skip past leading whitespace  

while ((i < n) && isspace(text[i])) 

 i++;  

// Find word end  

int start = i; 

 

while ((i < n) && !isspace(text[i]))  

i++;  

if (start < i) 

 

Emit( text . substr ( start , i−start ) ,”1”) ;  

} 

 }  

virtual void Reduce(ReduceInput∗ input)  

{ 

// Iterate over all entries with the 

// same key and add the values 

int64 value = 0;  

while (!input−>done())  

{ 

value += StringToInt(input−>value()); input−>NextValue 

();  

 }   

// Emit sum for input−>key()  

Emit( IntToString ( value ) ) ;  

}  

 

Sorting in Hadoop normally is an implicit merge-sort, 

which is done by the framework and does not need to be 

implemented. In the examples supplied with the Hadoop 

source code the Map and Reduce functions are left empty, 

there is only a special partitioning function that tries to find 

evenly distributed partitions based on a sample of a small 

subset of the keys. The sorting takes place on the nodes that 

perform the (empty) mapping function and the result of this 

process is merged together by the reducers. 

 

VI. HADOOP EXPERIMENTATION 

This experiment explores the functionality of Hadoop 

across various operating systems. We have tested it with the 

following OS versions: 

 Windows 7 

 Ubuntu Linux 14.04 

 Mac OS X Yosemite 

The main goal of this initial part of the experiment was to 

perform simple Hadoop installation in order to play around 

with the software and to learn more about how it works. In 

order to accomplish this, I installed a single node cluster on 

each of the three different environments (see [10] for a 

complete tutorial). 

After enough basic knowledge was gained in Hadoop, I 

decided to implement a multimode cluster in each of the 

operating systems in order to discover any differences that 

may surface amongst them.  

Oracle VM Virtual Box Manager in order to create the 

cluster of virtual operating systems. Figure 5 demonstrates the 

three operating systems inside the hypervisor. 

 

 

 

Figure 5 - Ubuntu Linux Hadoop multimode cluster. 

 

In Figure 5, we can observe the startup menu of the 

Hadoop Application, ready to be used with Ubuntu Linux. 

From here, we can perform the experiment of processing the 

necessary data. 
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Figure 6 - Hadoop cluster running on Ubuntu 

 

The processing of the data is carried out from Wikipedia’s 

data dump [11] with the word count example program, as 

shown in Figure 7. There was a limitation to a few TB of data 

due to storage limitations, but this had no effect on the core 

principals of the experiment. In order to ensure consistency, 

the same exact data and amount of memory with each of the 

different operating systems was used. 

 

 
 

Figure 7 - Sample Index of Wikipedia entries. 

 

We have discovered a few interesting things while 

conducting this research with regards to the efficiency of 

Hadoop across different OS platforms. When name node 

memory usage is higher than a certain percentage (say 75%), 

reading and writing HDFS files through Hadoop API will fail. 

This is caused by Java Hashmap as well as its collision 

resolution because it stores the collided elements in a linked 

list. Name node’s QPS (query per second) can be optimized 

by fine-tuning the handler counts higher than the number of 

tasks that can be run in parallel. 

 

 
 

Figure 8 - Test File Processing with Hadoop 

 

We create a test file in order to observe the processing 

performance of Hadoop. Keep in mind that the memory 

available affects the namenode’s performance in each OS 

platform. As such you should allocate sufficient memory in 

order to ensure it has headroom to not fall into full garbage 

cycles. The results are displayed in Figure 8. Since memory 

has such an effect performance, it makes sense that an 

Operating system that utilizes less RAM for background and 

utility features also yields better results.  In the case of this 

experiment Ubuntu Linux would be the ideal environment 

seeing as it uses the least amount of memory, followed by 

Mac OSX and then finally Windows. 
 

VII. OVERVIEW OF APACHE SPARK 

Spark is Apache software that is distribute and is highly 

scalable in the memory data analytics system. It is designed to 

be accessible and provides the ability to develop simple and 

complex application programming interfaces for many 

languages such as Python, Java, Scala, and SQL [1], [2]. They 

contain libraries within the system that have many options to 

perform Big Data Analysis. Spark can run in Hadoop clusters 

and access any Hadoop data source. 

The Spark project consists of components integrated at 

the core. It is considered to be a computational machine that is 

responsible for scheduling, distributing, and monitoring 

applications that involve computational tasks across computer 

clusters. This allows machine learning to be done at a fast 

pace. The components are interconnected and operate together 

in a network, allowing all types of users to put libraries 

together as one framework of the project [3]. 

Spark is one of the leading software applications in the 

market when it comes to Big Data. It has one of the highest 

contribution and involvement rates among the current Apache 

top level projects. Many Apache systems use a processing 

engine instead of MapReduce, which is used heavily by 

Hadoop. Figure 9, demonstrates Spark and the variety of 

modules that lie within the system. 
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Figure 9 -  Modules of the Apache Spark 

 

Apache Spark provides four main submodules, which are 

SQL, MLlib, GraphX, and Streaming. The modules are 

interoperable, so data can be passed between them. For 

instance, streamed data can be passed to SQL, and create a 

temporary table. Above, the top two rows show Apache Spark 

and four submodules [1]. 

 

VIII. BENEFITS OF APACHE SPARK 

Spark has several benefits that need to be taken into 

consideration. When Spark’s core engine is optimized, the rest 

of the system speeds up, creating a better environment for 

SQL and machine learning. In addition, the cost is lower when 

the stacks are minimized. This demonstrates that instead of 

running a group or network of independent software systems, 

an enterprise would only use one [2]. This is considered to be 

a type of virtualization because the amount of physical space 

is reduced, benefiting enterprises. 

The application would help to reduce costs in several 

aspects such as deployment, maintenance, testing, support, 

and other financial factors. When a new component is added 

to the software, all organizations that are running their 

systems on Spark are going to be required to upgrade their 

systems using the new components. This changes the cost of 

trying out a new type of data analysis from downloading, 

deploying, and learning a new software project to upgrading 

Apache Spark [2]. 

If core engine optimization and software component 

addition are considered to be beneficial to the organizations 

using Spark, then tight integration would be considered to be 

the largest advantage of the Spark application. With the use of 

integration, we gain the ability to construct applications that 

can combine different types of processing models. Just to help 

visualize this advantage, suppose that in Spark you can write 

one application that uses machine learning to classify data in 

real time as it gets acquired from streaming sources. 

Simultaneously, the resulting data can be queried by means of 

SQL in real time. The purpose of this process is to join the 

data that contains unstructured log files in the system. Here is 

where the Python shell would be used for further analysis on 

the data. 

 

 
 

Figure 10 - Components of the Spark Stack 

 

IX. CONCLUSION 

Overall, it is evident that the growing technology that 

surrounds is just going to expand into new horizons. As this 

occurs, it is very important that we keep our storages of data 

secure and accessible. Hadoop and Spark do just that. 

Throughout this investigation, experiments have been 

performed with Hadoop to demonstrate that it can be used to 

manage large quantities of data by useful means of HDFS and 

MapReduce. Even though experimentation was done mostly 

in Hadoop and many results were obtained, Spark could be a 

better choice for enterprises since it was designed to facilitate 

the workloads used before as individual distributed systems. 

Now that everything is done in one engine, Spark can cover a 

wider range of tasks and there won’t be the need of managing 

many tools in the system. For further research, I plan to 

explore Spark as well as MapReduce and HDFS in order to 

uncover what makes it the top option to perform Big Data 

processes and analyses. 
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