
Big Data Analysis Using Hadoop and MapReduce 
 

Harrison Carranza, MSIS 
Marist College, Harrison.Carranza2@marist.edu 

 
Mentor: Aparicio Carranza, PhD 

New York City College of Technology - CUNY, USA, acarranza@citytech.cuny.edu  
 
Abstract– In the last few years, the advancement of 
technology has been growing at a rapid rate. This trend is 
expected to continue to grow over the next few years due to 
the amount of data and information being created daily. 
Eventually, it is going to be difficult to manage various 
aspects of our information. As a result of this, it is essential 
to acquire the necessary tools or software to help us organize 
our information and use it to acquire as well as filter certain 
pieces of data we consider important. Specifically, Apache 
Hadoop is designed to perform such tasks. Its software 
library incorporated internally allows users to work with 
hundreds of nodes and petabytes of data. In addition, it 
allows analysis to be done among interactive queries at a 
very fast rate. One application in Hadoop, MapReduce, is 
used to filter and analyze activity log files recorded by 
computers at a fundamental level to help us increase 
awareness of the level of security in our systems and monitor 
any strange activities occurring in a network. With the use 
of the Linux operating system, we can determine the number 
of instances of certain activity within our system by creating 
commands that help parse log files without having to open 
up the files to manually count them. 
 
Keywords — Big Data, Hadoop, MapReduce, Parse, Queries 
 

I.  INTRODUCTION 
     As the amount of data we use increases, so does the need 
of the analysis. In the last few decades, technology has grown 
vastly and will only continue to do so in the future. There was 
a time when personal computers were equipped with 16KB of 
RAM and required cassettes for storage. Today, modern 
computers now contain 8GB or more of RAM with internal 
storage of more than 1TB. This is not including external 
memory that could be well beyond 1TB [1]. 
     To demonstrate how big data has evolved over time, we 
can consider the example of social media. As of 2014 
Facebook has stored 300 Petabytes of data at a rate of 600 
terabytes a day in order to handle its users’ billions of photos 
and video [5]. YouTube users around the world upload nearly 
400GB of videos online per hour. Uploading these enormous 
amounts of data create problems for computing power and 
storage capabilities. For example, 10TB of data would take 5 
nodes of parallel computing power about 6 hours to 
process/read it whereas if this data were spread across 500 
nodes it would then take around 6 minutes to read. If 

transferred over a network to other nodes the time would 
increase by some orders of magnitude [3]. 
     Apache Hadoop is the designated software that can address 
these concerns by distributing the work and data over 
thousands of machines in clusters. The workload is spread 
evenly across the cluster, which allows for effective parallel 
computing of data. It also ensures that only a small amount of 
data is transferred over the network on processing time so it 
suits best scenarios where data is written once and gets read 
many times, known as WORM [1]. 
     Hadoop consists of two parts: Hadoop Distributed File 
System (HDFS) and MapReduce. The former is designed to 
scale Petabytes of storage and runs on top of the file systems 
of the underlying operating system in order to provide high-
throughput access to application data. The MapReduce 
programming model is a simple technique that allows 
programmers to work on an abstract level without having to 
play around with cluster specific details or communication 
and data flow. With the use of two functions, map and 
reduce, we are able to receive incoming data, analyze it, 
modify it, and then send it to an output channel. 
     In section I, we provided the motivation and background 
for this work.  Section II, III, and IV present The Hadoop 
Framework, Map Reduce & Work Count; and Hadoop & Map 
Reduce, respectively. In Section V, we present our Map 
Reduce Experimentation. Finally, in Section VI our 
Conclusions are included. 
 

II. THE HADOOP FRAMEWORK 
     Hadoop attempts to locate the work units on the same 
nodes as the data for this unit is hosted. This is important 
because in a data center the network bandwidth is considered 
to be the most precious asset if the amount of data is large. 
After all, Hadoop consists of the three primary resources: 
HDFS, MapReduce programming platform, and the Hadoop 
ecosystem, which is a collection of tools that organize and 
store data as well as manage the machines on Hadoop [2], [4]. 
     Hadoop is written in Java but can run the MapReduce 
programs expressed in other languages such as Python, Ruby, 
and C++ [5], [6]. No matter which language is implemented 
in; the map function will still function properly as long as it 
can read and write from standard input to standard output. To 
understand Hadoop, it is fundamental to learn about the 
WordCount option using MapReduce. It is considered to be 
“Hello World” equivalent of Hadoop because it teaches how 
to begin using the software but it also provides us with the 

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and 
Inclusion”, 19-21 July 2018, Lima, Peru. 

mailto:Harrison.Carranza2@marist.edu
mailto:acarranza@citytech.cuny.edu


ability to log files, analyze activity, and other advanced tasks. 
The main objective is going to be to perform the Word Count 
example making use of the MapReduce option on Hadoop in 
order to determine how many times a certain item or items 
appear in a given file. Figure 1 below shows a basic overview 
of Word Count in action, using letters as part of the example. 
 

 
Figure 1 – Word Count Basic Overview 

 
III. MAP REDUCE AND WORD COUNT 

     MapReduce was the first and is still the primary 
programming framework for developing applications in 
Hadoop. MapReduce functions with the use of Java. This 
application has jobs that consist of Java programs called 
mappers and reducers. The way that it works is that each 
mapper is provided data that is to be analyzed. Using a 
sentence for an example, we could analyze the data [2], [4]. 
     To illustrate how MapReduce functions, we can use an 
example called “Word Count”. If we create a sentence, we 
could analyze it from top to bottom and create name-value 
pairs or maps. For experimentation purposes, let’s assume it 
gets a sentence: “My cat fell asleep on my bed.” The maps 
are: “my”:1, “cat”:1, “fell”:1, “asleep”:1, “on”:1, “my”:1, and 
“bed”:1. The name is the word, and the value is a count of 
how many times it appears on record. In this example, all the 
words would show up with a 1 next to it but “my” would be 
displayed as “my”:2 once the processing is done [2]. 
     The job of Hadoop is to process all the data, in this case, 
the sentence, and arranges it as needed. Once the sentence is 
inputted into the program, the mapper analyzes it and creates a 
key. This key is what gathers together all the information from 
the mapper before they get shuffled. Once they are shuffled by 
the reducer, it adds up all the maps for each word, sorts them 

in alphabetical order with their number of occurrences, and 
produces the output of words listed in a text document. 
Essentially, mappers are programs that extract data from 
HDFS files into maps, and reducers as programs that take the 
output from the mappers and overall aggregate data [5]. 
 

IV. HADOOP AND MAPREDUCE SETUP 
     This experiment explores the functionality of Hadoop 
across certain operating systems. For our purposes, we have 
tested it with the 64-bit OS version of Ubuntu Linux 16.04 
using a single laptop [8]. The computer used has an Intel Core 
i7 processor of 2.40GHz with a RAM of 6GB. There really is 
not a specific minimal hardware requirement considering that 
it requires only one system. However, it is beneficial if larger 
memory for the expectancy of quick and efficient results as 
well as for the use of more than one operating system. 
     The main goal of this initial part of the experiment was to 
perform a simple Hadoop installation in order to determine the 
system capabilities and build a prototype using the word count 
function and to learn more about how it works. In order to 
accomplish this, I installed Ubuntu 16 on a laptop in order to 
perform our primary goal of running an activity log file of a 
computer system that demonstrates how MapReduce functions 
on Hadoop. 
 The installation process of Hadoop on Ubuntu Linux is 
the first step to accomplishing this task. Since the operating 
system is a Linux distribution, most of the time the Java 
packages are already incorporated inside. However, if the 
programming language is not installed, there are some steps 
that need to be taken. 
 To update the package list, simply type the following 
command on prompt terminal of Linux: 
 $ sudo apt-get update 
 To install OpenJDK, the available Java Development Kit, 
type in the following: 
 $ sudo apt-get install default-jdk 
 To check the version, type in: 
 $ java –version 
 Once Java is set up on the computer, it is time to 
download a stable release of Hadoop. The link below can 
direct you to stable releases: 

www.hadoop.apache.org 
It is essential that the binary link is clicked on to 

download the most stable release. For our purposes, we used 
version 2.7.3 [7]. The Hadoop files should be moved to the 
/usr/local directory where local software is installed. 

Once Hadoop is installed and configured on your 
computer, it is time to run it. Hadoop should be stored in the 
directory mentioned earlier. Figure 2 shows the command that 
needs to be types as well as the output. 

 

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and 
Inclusion”, 19-21 July 2018, Lima, Peru. 

http://www.hadoop.apache.org/


 
Figure 2 – Location of Hadoop Configuration Files 

  
Once the above results are obtained, we can verify that we 
successfully configured Hadoop to run in stand-alone mode. 
To demonstrate that it is running properly, the MapReduce 
function is going to be put into use by typing in the following 
commands on the terminal: 
 $ mkdir ~/input 
 $ cp /usr/local/hadoop/etc/hadoop/*.xml ~/input 
 The commands above are used to show the example of 
MapReduce. First, we make a directory called ~/input inside 
our home directory to call up the necessary files later. Then 
we copy the configuration files from the Hadoop program to 
use as our data for the MapReduce example. 
 

V. MAPREDUCE EXPERIMENTATION 
 Once all the files are set, it is time to experiment with the 
MapReduce program. The objective of the example is to 
determine how many times a word or phrase shows up in a file 
or document. 
 Using the grep command in Linux, MapReduce is going 
to count the number of instances of a literal word or phrase. 
For this instance, we used the word “principal” to help us 
prove the proper function of the program. The word 
“principal” is expected to show up, whether it is at the middle 
or end of a declarative sentence. It is important to keep in 
mind that the expression is case-sensitive so if we were to type 
in the word all in lower case, the results would not show for 
any word that is at the beginning of a sentence as they would 
start with a capital letter. 
 Figure 3 below shows the commands on the prompt that 
allows us to create the grep_example file to determine the 
number of instances that the word “principal” shows up across 
all files in the ~/input folder. 

 

 
Figure 3 – Command for creating grep_example file 

 

 
Figure 4 – Output of grep_example verifying configuration 

 
Figure 4 above shows what the output should be once the 

command in the above figure is entered. It is important to 
know that this output shows up when the grep_example folder 
is being created. 
 

 
Figure 5 – Output of grep_example verifying folder existence 
 

Figure 5 above shows another output that is produced by 
the command shown in the figure 2. This output shows up 
because the grep_example folder already exists.  

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and 
Inclusion”, 19-21 July 2018, Lima, Peru. 



 

 
Figure 6 – Output showing instances of “principal” 

 
Figure 6 above shows the command that needs to be typed 

in to determine the necessary output. We use the concatenate 
command followed by the grep_example file. Once it is 
entered, the word “principal” shows up with the number of 
instances present across all files stored in the ~/input folder. 

The next few screen captures are just some examples that 
prove the proper functioning of the MapReduce program on 
Hadoop using Linux. During the experimentation, we first 
used just one activity log file to track how many instances of 
access were made during a certain given period of time. 
However, we wanted to make sure that we could obtain 
consistent results, especially because eventually others shall 
make use of the program. In order to make that happen, we 
underwent some steps. 

In the ~/input folder, there are several .xml files created 
by the installation of the Hadoop program on Linux. The 
activity log file given to us was placed into the input folder 
and then converted to an .xml file so as to make sure that it 
could be read by the MapReduce program. However, it is not 
necessary to do this since the program is going to read the 
archives regardless of their file extension. For this experiment, 
we created four identical activity log files: one in its original 
.txt format and the other three in .xml format. 
 The following data and screen captures are some 
examples of our investigation of MapReduce. We used five 
words or phrases to display how many times they are present 
in the input directory. 
 

 
Figure 7 – Command for grep_example1 

  
In Figure 7, we run the command that helps us obtain the 

number of instances the word “the” is present among the files 
in the input folder. This word has been used since it is a 
common word and can help us guarantee that it shall show up 
several times in order to prove our point. In Figure 8 below, 
we can see that across all 12 files in the designated directory, 
the word “the” shows up 173 times. This does not consider the 
fact that there are times where “The” shows up with a capital 
letter at the beginning. 
 

 
Figure 8 – Output showing instances of “the” 

 

 In the next few screen captures, we are going to focus on 
the amount of times certain phrases appear in the activity log 
files. Since we created the input folder in the previous steps, 
we shall use this directory to store the log files we are going to 
work with here. For the purposes of experimentation, we 
create four identical log files. The reason behind this is to 
demonstrate that when a user wants to search for certain 
instances of a word or phrase among several files, the program 
is going to successfully complete this task. In this situation, it 
is important to keep in mind that despite there being other files 
from the steps before, we only expect the results to originate 
from the four log files created in the input directory. 
 

 
Figure 9 – Activity Log File with entries to be processed 

 
The objective is to determine the amount of times a 

certain word or phrase comes up. Here, we experiment with 
the word “data” by typing in the command illustrated in 
Figure 10. Once that is executed on the Linux prompt, the 
output displayed in Figure 11 should show up on the screen. 
 

 
Figure 10 – Command for grep_example2 

 
Figure 11 – Output showing all instances of “data” 

 
 In Figure 11, we can see that the output is displayed on 
two lines. The first line indicates to us that “data” alone 
appears 11 times across all files in the input folder. The 
second line demonstrates how many times the word shows up 
but with a period after it, meaning that it is located at the end 
of a sentence. 

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and 
Inclusion”, 19-21 July 2018, Lima, Peru. 



 In this next example, we shall work with a phrase instead 
of a word: “Server listening.” Please note that it is essential to 
spell it appropriately as we are dealing with a case-sensitive 
program. This restriction forces the user to be more specific in 
their search because one character variation can cause words 
or phrases to be analyzed or interpreted in many ways that can 
be used for different purposes. 
 

 
Figure 12 – Command for grep_example3 

 
 We type in the command below in Figure 12 in order to 
obtain the instances of the aforementioned phrase. In Figure 
13, we see the amount of times that “Server listening” popped 
up on the screen is eight. When the command was executed 
the first time, it showed up as two times because only log file 
existed. Since we are using four identical log files, it makes 
sense that there are eight in total. 
 

 
Figure 13 – Output showing all instances of “Server listening” 
 
 Now, we can get into more detailed examples. This 
example is focused on retrieving the number of times users 
have tried to connect to the system; specifically, we are 
looking for “Connection from” among the archives in ~/input. 
 

 
Figure 14 – Command for grep_example4 

 
 Once the command in Figure 14 is run, the output should 
up with 328 instances of the words “Connection from,” as 
shown in Figure 15. 
 

 
Figure 15 – Output showing instances of “Connection from” 

 
Our last example is probably the most interesting one. 

The objective of this demonstration of the MapReduce 
program is to show how many times someone has attempted to 
log onto our system or network and have failed to do so. 
 

 
Figure 16 – Command for grep_example5 

It is important to realize several things with the output in 
Figure 17. When there was only one file, the output originally 
came out as 101 instances of “Failed password” with a capital 
“F.” During the testing, the command was run as “failed 
password” with a small “f,” which gave zero results. Since we 
have four files in total, the command was run again and the 
output shown below was displayed. At the time of analysis, 
we concluded that if 101 instances were showing up for one 
file, then 404 instances would show up for four files. To 
verify that the program is functioning properly, we copied the 
data inside one file to a .docx file and used the search option 
of Microsoft Word to support our findings. With those results, 
we could prove that MapReduce on Linux is working fine. 
 

 
Figure 17 – Output showing instances of “Failed password” 

 

 
Figure 18 – ~/input directory with all files 

 
Figure 18 shows the .xml files and log file as a .txt file 

that were used during experimentation. They are all stored in 
the ~/input directory. 
 

 
Figure 19 – home directory where all grep-example folders 

and input folder are stored 
 
In Figure 19, you can see where all the grep_example 

folders are stored as well as the input folder where our .xml 
and .txt files are placed in. Each grep_example folder is 
created after each command is executed on the Linux 
command prompt. Once the grep command is put into use, a 

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and 
Inclusion”, 19-21 July 2018, Lima, Peru. 



16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and 
Inclusion”, 19-21 July 2018, Lima, Peru. 

text file is created inside each folder containing the instances 
of the stated word or phrase. 

 
VI. CONCLUSION 

During this investigation, we have uncovered a technique 
that could help us as manage and analyze any given data. 
Hadoop is one aspect that helps us to perform this task. The 
program used throughout this investigation was MapReduce, 
which helped us capture certain instances where a user may 
have tried accessing a network or an unauthorized person may 
have attempted an attack on the infrastructure by means of an 
activity log file. Although what was used in this experiment 
was that of a prototype, this small scale experimentation gives 
us the basic overview of what the application is capable of 
doing on greater scales for larger amounts of data stored on 
bigger systems. The use of Hadoop and MapReduce could 
help facilitate the management of large quantities of data and 
help us locate any form of information that may need further 
analysis or inspection. 
 

 REFERENCES 
[1] Barot, G., Mehta, C., Patel, A.: Hadoop Backup and Recovery Solutions. 

O’Reilly, Sebastopol, CA (2015) 
[2] Sitto, K., Presser, M.: Field Guide to Hadoop. O’Reilly, Sebastopol, CA 

(2015) 
[3] White, T.: Hadoop: The Definitive Guide. Second Edition, Yahoo Press, 

(2009) 
[4] Schneider, R.: Hadoop for Dummies. John Wiley & Sons, Inc. (2012) 
[5] Frampton, M.: Mastering Apache Spark. Packt Publishing, Birmingham, 

UK (2015) 
[6] Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark. 

O’Reilly, Sebastopol, CA (2015) 
[7] Apache Hadoop http://hadoop.apache.org/ (Retrieved: 2017-03-17) 
[8] Anderson, Melissa.: https://www.digitalocean.com/community/tutorials/-

how-to-install-hadoop-in-stand-alone-mode-on-ubuntu-16-04/ 
(Published: 2016-10-13) (Retrieved: 2017-03-17) 

 
 
 
 
 
 
 

https://www.digitalocean.com/community/tutorials/-how-to-install-hadoop-in-stand-alone-mode-on-ubuntu-16-04/
https://www.digitalocean.com/community/tutorials/-how-to-install-hadoop-in-stand-alone-mode-on-ubuntu-16-04/

	I.  INTRODUCTION
	II. THE HADOOP FRAMEWORK
	III. MAP REDUCE AND WORD COUNT
	IV. HADOOP AND MAPREDUCE SETUP
	V. MAPREDUCE EXPERIMENTATION
	VI. CONCLUSION
	 REFERENCES

